基于CNN和多核学习的视听数据鸟类分类

B. Naranchimeg, Chao Zhang, T. Akashi
{"title":"基于CNN和多核学习的视听数据鸟类分类","authors":"B. Naranchimeg, Chao Zhang, T. Akashi","doi":"10.1109/CW.2019.00022","DOIUrl":null,"url":null,"abstract":"Recently, deep convolutional neural networks (CNN) have become a new standard in many machine learning applications not only in image but also in audio processing. However, most of the studies only explore a single type of training data. In this paper, we present a study on classifying bird species by combining deep neural features of both visual and audio data using kernel-based fusion method. Specifically, we extract deep neural features based on the activation values of an inner layer of CNN. We combine these features by multiple kernel learning (MKL) to perform the final classification. In the experiment, we train and evaluate our method on a CUB-200-2011 standard data set combined with our originally collected audio data set with respect to 200 bird species (classes). The experimental results indicate that our CNN+MKL method which utilizes the combination of both categories of data outperforms single-modality methods, some simple kernel combination methods, and the conventional early fusion method.","PeriodicalId":117409,"journal":{"name":"2019 International Conference on Cyberworlds (CW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bird Species Classification with Audio-Visual Data using CNN and Multiple Kernel Learning\",\"authors\":\"B. Naranchimeg, Chao Zhang, T. Akashi\",\"doi\":\"10.1109/CW.2019.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, deep convolutional neural networks (CNN) have become a new standard in many machine learning applications not only in image but also in audio processing. However, most of the studies only explore a single type of training data. In this paper, we present a study on classifying bird species by combining deep neural features of both visual and audio data using kernel-based fusion method. Specifically, we extract deep neural features based on the activation values of an inner layer of CNN. We combine these features by multiple kernel learning (MKL) to perform the final classification. In the experiment, we train and evaluate our method on a CUB-200-2011 standard data set combined with our originally collected audio data set with respect to 200 bird species (classes). The experimental results indicate that our CNN+MKL method which utilizes the combination of both categories of data outperforms single-modality methods, some simple kernel combination methods, and the conventional early fusion method.\",\"PeriodicalId\":117409,\"journal\":{\"name\":\"2019 International Conference on Cyberworlds (CW)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Cyberworlds (CW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2019.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,深度卷积神经网络(CNN)已经成为许多机器学习应用的新标准,不仅在图像处理领域,在音频处理领域也是如此。然而,大多数研究只探索单一类型的训练数据。本文采用基于核融合的方法,结合视觉和听觉数据的深度神经特征进行了鸟类物种分类研究。具体来说,我们基于CNN内层的激活值提取深度神经特征。我们通过多核学习(MKL)将这些特征组合起来进行最终分类。在实验中,我们在一个CUB-200-2011标准数据集上训练和评估了我们的方法,并结合了我们最初收集的200种鸟类(类)的音频数据集。实验结果表明,利用两类数据组合的CNN+MKL方法优于单模态方法、一些简单的核组合方法和传统的早期融合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bird Species Classification with Audio-Visual Data using CNN and Multiple Kernel Learning
Recently, deep convolutional neural networks (CNN) have become a new standard in many machine learning applications not only in image but also in audio processing. However, most of the studies only explore a single type of training data. In this paper, we present a study on classifying bird species by combining deep neural features of both visual and audio data using kernel-based fusion method. Specifically, we extract deep neural features based on the activation values of an inner layer of CNN. We combine these features by multiple kernel learning (MKL) to perform the final classification. In the experiment, we train and evaluate our method on a CUB-200-2011 standard data set combined with our originally collected audio data set with respect to 200 bird species (classes). The experimental results indicate that our CNN+MKL method which utilizes the combination of both categories of data outperforms single-modality methods, some simple kernel combination methods, and the conventional early fusion method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG-Based Human Factors Evaluation of Air Traffic Control Operators (ATCOs) for Optimal Training Multi-instance Cancelable Biometric System using Convolutional Neural Network How does Augmented Reality Improve the Play Experience in Current Augmented Reality Enhanced Smartphone Games? Detection of Humanoid Robot Design Preferences Using EEG and Eye Tracker Vulnerability of Adaptive Strategies of Keystroke Dynamics Based Authentication Against Different Attack Types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1