探地雷达数学建模:并行计算应用

N. Cassidy, G. Tuckwell
{"title":"探地雷达数学建模:并行计算应用","authors":"N. Cassidy, G. Tuckwell","doi":"10.1117/12.462292","DOIUrl":null,"url":null,"abstract":"In heterogeneous sub-surface environments, the evaluation of GPR sections is complicated by the influence of near-field effects, antenna radiation patterns, velocity variations and surveying inconsistencies. Section interpretation can be exceedingly difficult, even with advanced processing methods, and therefore mathematical modelling has become an increasingly popular addition to traditional techniques. The Finite-Difference Time-Domain method (FDTD) is the most common, but to be of practical use the modelling scheme must incorporate realistic antenna configurations, complex sub-surface geometries and accurate material property descriptions. These additional components add computational complexity to the models and, at present, most single processor FDTD schemes are only capable of modelling relatively basic three-dimensional data sets in practical time scales. Modern parallel computing techniques have the potential to overcome these limitations by spreading the computational demand across a number of processors (or individual PC's). These PC 'cluster' machines provide the necessary computational power required to model more complex GPR problems in realistic time-scales. Consequently, the scope and run-time of current GPR FDTD modelling applications can be improved making them an accessible and affordable aid to GPR interpretation.","PeriodicalId":256772,"journal":{"name":"International Conference on Ground Penetrating Radar","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mathematical modeling of ground-penetrating radar: parallel computing applications\",\"authors\":\"N. Cassidy, G. Tuckwell\",\"doi\":\"10.1117/12.462292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In heterogeneous sub-surface environments, the evaluation of GPR sections is complicated by the influence of near-field effects, antenna radiation patterns, velocity variations and surveying inconsistencies. Section interpretation can be exceedingly difficult, even with advanced processing methods, and therefore mathematical modelling has become an increasingly popular addition to traditional techniques. The Finite-Difference Time-Domain method (FDTD) is the most common, but to be of practical use the modelling scheme must incorporate realistic antenna configurations, complex sub-surface geometries and accurate material property descriptions. These additional components add computational complexity to the models and, at present, most single processor FDTD schemes are only capable of modelling relatively basic three-dimensional data sets in practical time scales. Modern parallel computing techniques have the potential to overcome these limitations by spreading the computational demand across a number of processors (or individual PC's). These PC 'cluster' machines provide the necessary computational power required to model more complex GPR problems in realistic time-scales. Consequently, the scope and run-time of current GPR FDTD modelling applications can be improved making them an accessible and affordable aid to GPR interpretation.\",\"PeriodicalId\":256772,\"journal\":{\"name\":\"International Conference on Ground Penetrating Radar\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Ground Penetrating Radar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.462292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.462292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在非均质次地表环境下,GPR剖面的评价由于近场效应、天线辐射方向图、速度变化和测量不一致性的影响而变得复杂。即使使用先进的处理方法,剖面解释也可能非常困难,因此数学建模已经成为传统技术的一种日益流行的补充。时域有限差分法(FDTD)是最常用的方法,但为了实际应用,建模方案必须结合真实的天线配置、复杂的次表面几何形状和准确的材料特性描述。这些额外的组件增加了模型的计算复杂性,目前,大多数单处理器FDTD方案只能在实际时间尺度上对相对基本的三维数据集进行建模。现代并行计算技术有可能通过将计算需求分散到多个处理器(或单个PC)来克服这些限制。这些PC“集群”机器提供了在现实时间尺度上模拟更复杂的探地雷达问题所需的必要计算能力。因此,当前探地雷达时域有限差分建模应用程序的范围和运行时间可以得到改进,使它们成为探地雷达解释的可访问和负担得起的援助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical modeling of ground-penetrating radar: parallel computing applications
In heterogeneous sub-surface environments, the evaluation of GPR sections is complicated by the influence of near-field effects, antenna radiation patterns, velocity variations and surveying inconsistencies. Section interpretation can be exceedingly difficult, even with advanced processing methods, and therefore mathematical modelling has become an increasingly popular addition to traditional techniques. The Finite-Difference Time-Domain method (FDTD) is the most common, but to be of practical use the modelling scheme must incorporate realistic antenna configurations, complex sub-surface geometries and accurate material property descriptions. These additional components add computational complexity to the models and, at present, most single processor FDTD schemes are only capable of modelling relatively basic three-dimensional data sets in practical time scales. Modern parallel computing techniques have the potential to overcome these limitations by spreading the computational demand across a number of processors (or individual PC's). These PC 'cluster' machines provide the necessary computational power required to model more complex GPR problems in realistic time-scales. Consequently, the scope and run-time of current GPR FDTD modelling applications can be improved making them an accessible and affordable aid to GPR interpretation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of a tropical ice body on Iztaccihuatl volcano, Mexico Neural network target identifier based on statistical features of GPR signals 3D estimation of target positions with borehole radar using e-field sensor array Advanced processing of cross-hole radar-tomographic data: inversion of partial data sets and error analysis Polarimetric model for a stepped-frequency continuous-wave ground-penetrating radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1