{"title":"弹性波的逆随机势散射","authors":"Jianliang Li, Peijun Li, Xu Wang","doi":"10.1137/22m1497183","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the inverse elastic scattering problem for a random potential in three dimensions. Interpreted as a distribution, the potential is assumed to be a microlocally isotropic Gaussian random field whose covariance operator is a classical pseudo-differential operator. Given the potential, the direct scattering problem is shown to be well-posed in the distribution sense by studying the equivalent Lippmann--Schwinger integral equation. For the inverse scattering problem, we demonstrate that the microlocal strength of the random potential can be uniquely determined with probability one by a single realization of the high frequency limit of the averaged compressional or shear backscattered far-field pattern of the scattered wave. The analysis employs the integral operator theory, the Born approximation in the high frequency regime, the microlocal analysis for the Fourier integral operators, and the ergodicity of the wave field.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inverse Random Potential Scattering for Elastic Waves\",\"authors\":\"Jianliang Li, Peijun Li, Xu Wang\",\"doi\":\"10.1137/22m1497183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the inverse elastic scattering problem for a random potential in three dimensions. Interpreted as a distribution, the potential is assumed to be a microlocally isotropic Gaussian random field whose covariance operator is a classical pseudo-differential operator. Given the potential, the direct scattering problem is shown to be well-posed in the distribution sense by studying the equivalent Lippmann--Schwinger integral equation. For the inverse scattering problem, we demonstrate that the microlocal strength of the random potential can be uniquely determined with probability one by a single realization of the high frequency limit of the averaged compressional or shear backscattered far-field pattern of the scattered wave. The analysis employs the integral operator theory, the Born approximation in the high frequency regime, the microlocal analysis for the Fourier integral operators, and the ergodicity of the wave field.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1497183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1497183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inverse Random Potential Scattering for Elastic Waves
This paper is concerned with the inverse elastic scattering problem for a random potential in three dimensions. Interpreted as a distribution, the potential is assumed to be a microlocally isotropic Gaussian random field whose covariance operator is a classical pseudo-differential operator. Given the potential, the direct scattering problem is shown to be well-posed in the distribution sense by studying the equivalent Lippmann--Schwinger integral equation. For the inverse scattering problem, we demonstrate that the microlocal strength of the random potential can be uniquely determined with probability one by a single realization of the high frequency limit of the averaged compressional or shear backscattered far-field pattern of the scattered wave. The analysis employs the integral operator theory, the Born approximation in the high frequency regime, the microlocal analysis for the Fourier integral operators, and the ergodicity of the wave field.