{"title":"动态可重构嵌入式系统的在线系统级性能和功率估计","authors":"Jingqing Mu, Roman L. Lysecky","doi":"10.1109/ASPDAC.2011.5722285","DOIUrl":null,"url":null,"abstract":"Significant research has demonstrated the performance and power benefits of runtime dynamic reconfiguration of FPGAs and microprocessor/FPGA devices. For dynamically reconfigurable systems, in which the selection of hardware coprocessors to implement within the FPGA is determined at runtime, online estimation methods are needed to evaluate the performance and power consumption impact of the hardware coprocessor selection. In this paper, we present a profile assisted online system-level performance and power estimation framework for estimating the speedup and power consumption of dynamically reconfigurable embedded systems. We evaluate the accuracy and fidelity of our online estimation framework for dynamic hardware kernel selection to maximize performance or minimize system power consumption.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Profile assisted online system-level performance and power estimation for dynamic reconfigurable embedded systems\",\"authors\":\"Jingqing Mu, Roman L. Lysecky\",\"doi\":\"10.1109/ASPDAC.2011.5722285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant research has demonstrated the performance and power benefits of runtime dynamic reconfiguration of FPGAs and microprocessor/FPGA devices. For dynamically reconfigurable systems, in which the selection of hardware coprocessors to implement within the FPGA is determined at runtime, online estimation methods are needed to evaluate the performance and power consumption impact of the hardware coprocessor selection. In this paper, we present a profile assisted online system-level performance and power estimation framework for estimating the speedup and power consumption of dynamically reconfigurable embedded systems. We evaluate the accuracy and fidelity of our online estimation framework for dynamic hardware kernel selection to maximize performance or minimize system power consumption.\",\"PeriodicalId\":316253,\"journal\":{\"name\":\"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2011.5722285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2011.5722285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Profile assisted online system-level performance and power estimation for dynamic reconfigurable embedded systems
Significant research has demonstrated the performance and power benefits of runtime dynamic reconfiguration of FPGAs and microprocessor/FPGA devices. For dynamically reconfigurable systems, in which the selection of hardware coprocessors to implement within the FPGA is determined at runtime, online estimation methods are needed to evaluate the performance and power consumption impact of the hardware coprocessor selection. In this paper, we present a profile assisted online system-level performance and power estimation framework for estimating the speedup and power consumption of dynamically reconfigurable embedded systems. We evaluate the accuracy and fidelity of our online estimation framework for dynamic hardware kernel selection to maximize performance or minimize system power consumption.