{"title":"非线性电磁逆散射的复值深度卷积网络","authors":"Longgang Wang, Min Wang, Wei Zhong, Lianlin Li","doi":"10.1109/COMPEM.2018.8496632","DOIUrl":null,"url":null,"abstract":"Electromagnetic inverse scattering problem is a typical complex problem while traditional deep convolutional neural network can only be applied to real problem. Motivated by this, this paper presents a new approach for electromagnetic inverse problem with complex convolutional neural network. In this way, several cascaded convolutional neural network modules are introduced to learn a model to realize super-resolution for electromagnetic imaging. The simulation and experimental results show that the proposed method paves a new way addressing realtime practical large-scale electromagnetic inverse scattering problems.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Complex-Valued Deep Convolutional Networks for Nonlinear Electromagnetic Inverse Scattering\",\"authors\":\"Longgang Wang, Min Wang, Wei Zhong, Lianlin Li\",\"doi\":\"10.1109/COMPEM.2018.8496632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic inverse scattering problem is a typical complex problem while traditional deep convolutional neural network can only be applied to real problem. Motivated by this, this paper presents a new approach for electromagnetic inverse problem with complex convolutional neural network. In this way, several cascaded convolutional neural network modules are introduced to learn a model to realize super-resolution for electromagnetic imaging. The simulation and experimental results show that the proposed method paves a new way addressing realtime practical large-scale electromagnetic inverse scattering problems.\",\"PeriodicalId\":221352,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2018.8496632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Complex-Valued Deep Convolutional Networks for Nonlinear Electromagnetic Inverse Scattering
Electromagnetic inverse scattering problem is a typical complex problem while traditional deep convolutional neural network can only be applied to real problem. Motivated by this, this paper presents a new approach for electromagnetic inverse problem with complex convolutional neural network. In this way, several cascaded convolutional neural network modules are introduced to learn a model to realize super-resolution for electromagnetic imaging. The simulation and experimental results show that the proposed method paves a new way addressing realtime practical large-scale electromagnetic inverse scattering problems.