非线性电磁逆散射的复值深度卷积网络

Longgang Wang, Min Wang, Wei Zhong, Lianlin Li
{"title":"非线性电磁逆散射的复值深度卷积网络","authors":"Longgang Wang, Min Wang, Wei Zhong, Lianlin Li","doi":"10.1109/COMPEM.2018.8496632","DOIUrl":null,"url":null,"abstract":"Electromagnetic inverse scattering problem is a typical complex problem while traditional deep convolutional neural network can only be applied to real problem. Motivated by this, this paper presents a new approach for electromagnetic inverse problem with complex convolutional neural network. In this way, several cascaded convolutional neural network modules are introduced to learn a model to realize super-resolution for electromagnetic imaging. The simulation and experimental results show that the proposed method paves a new way addressing realtime practical large-scale electromagnetic inverse scattering problems.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Complex-Valued Deep Convolutional Networks for Nonlinear Electromagnetic Inverse Scattering\",\"authors\":\"Longgang Wang, Min Wang, Wei Zhong, Lianlin Li\",\"doi\":\"10.1109/COMPEM.2018.8496632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic inverse scattering problem is a typical complex problem while traditional deep convolutional neural network can only be applied to real problem. Motivated by this, this paper presents a new approach for electromagnetic inverse problem with complex convolutional neural network. In this way, several cascaded convolutional neural network modules are introduced to learn a model to realize super-resolution for electromagnetic imaging. The simulation and experimental results show that the proposed method paves a new way addressing realtime practical large-scale electromagnetic inverse scattering problems.\",\"PeriodicalId\":221352,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2018.8496632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电磁逆散射问题是一个典型的复杂问题,传统的深度卷积神经网络只能应用于实际问题。基于此,本文提出了一种用复杂卷积神经网络求解电磁逆问题的新方法。通过引入多个级联卷积神经网络模块学习模型,实现电磁成像的超分辨率。仿真和实验结果表明,该方法为解决实时实际大规模电磁逆散射问题开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complex-Valued Deep Convolutional Networks for Nonlinear Electromagnetic Inverse Scattering
Electromagnetic inverse scattering problem is a typical complex problem while traditional deep convolutional neural network can only be applied to real problem. Motivated by this, this paper presents a new approach for electromagnetic inverse problem with complex convolutional neural network. In this way, several cascaded convolutional neural network modules are introduced to learn a model to realize super-resolution for electromagnetic imaging. The simulation and experimental results show that the proposed method paves a new way addressing realtime practical large-scale electromagnetic inverse scattering problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designs of Compact, Planar, Wideband, Monopole Filtennas with Near-Field Resonant Parasitic Elements A Fast and High Order Algorithm for the Electromagnetic Scattering of Axis-Symmetric Objects A New Approach of Individually Control of Shorting Posts for Pattern Reconfigurable Antenna Designs X-Band Low Phase Noise Oscillator Based on Hybrid SIW Cavity Resonator Wideband CP Polarization and Pattern Reconfigurable Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1