{"title":"有效的图像传输通过模拟误差校正","authors":"Yang Liu, T. Li, Kai Xie","doi":"10.1109/MMSP.2011.6093827","DOIUrl":null,"url":null,"abstract":"This paper presents a new paradigm for image transmission through analog error correction codes. Conventional schemes rely on digitizing images through quantization (which inevitably causes significant bandwidth expansion) and transmitting binary bit-streams through digital error correction codes (which do not automatically differentiate the different levels of significance among the bits). To strike a better overall performance in terms of transmission efficiency and quality, we propose to use a single analog error correction code in lieu of digital quantization, digital code and digital modulation. The key is to get analog coding right. We show that this can be achieved by cleverly exploiting an elegant “butterfly” property of chaotic systems. Specifically, we demonstrate a tail-biting triple-branch baker's map code and its maximum-likelihood decoding algorithm. Simulations show that the proposed analog code can actually outperform digital turbo code, one of the best codes known to date! The results and findings discussed in this paper speak volume for the promising potential of analog codes, in spite of their rather short history.","PeriodicalId":214459,"journal":{"name":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Efficient image transmission through analog error correction\",\"authors\":\"Yang Liu, T. Li, Kai Xie\",\"doi\":\"10.1109/MMSP.2011.6093827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new paradigm for image transmission through analog error correction codes. Conventional schemes rely on digitizing images through quantization (which inevitably causes significant bandwidth expansion) and transmitting binary bit-streams through digital error correction codes (which do not automatically differentiate the different levels of significance among the bits). To strike a better overall performance in terms of transmission efficiency and quality, we propose to use a single analog error correction code in lieu of digital quantization, digital code and digital modulation. The key is to get analog coding right. We show that this can be achieved by cleverly exploiting an elegant “butterfly” property of chaotic systems. Specifically, we demonstrate a tail-biting triple-branch baker's map code and its maximum-likelihood decoding algorithm. Simulations show that the proposed analog code can actually outperform digital turbo code, one of the best codes known to date! The results and findings discussed in this paper speak volume for the promising potential of analog codes, in spite of their rather short history.\",\"PeriodicalId\":214459,\"journal\":{\"name\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2011.6093827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2011.6093827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient image transmission through analog error correction
This paper presents a new paradigm for image transmission through analog error correction codes. Conventional schemes rely on digitizing images through quantization (which inevitably causes significant bandwidth expansion) and transmitting binary bit-streams through digital error correction codes (which do not automatically differentiate the different levels of significance among the bits). To strike a better overall performance in terms of transmission efficiency and quality, we propose to use a single analog error correction code in lieu of digital quantization, digital code and digital modulation. The key is to get analog coding right. We show that this can be achieved by cleverly exploiting an elegant “butterfly” property of chaotic systems. Specifically, we demonstrate a tail-biting triple-branch baker's map code and its maximum-likelihood decoding algorithm. Simulations show that the proposed analog code can actually outperform digital turbo code, one of the best codes known to date! The results and findings discussed in this paper speak volume for the promising potential of analog codes, in spite of their rather short history.