{"title":"裸眼和套管井多接收机全波形声波测井速度分析","authors":"L. Block, Chuen Hon Arthur Cheng, G. Duckworth","doi":"10.1190/1.1893094","DOIUrl":null,"url":null,"abstract":"Average semblance and maximum-likelihood spectral analyses are applied to synthetic and field full waveform acoustic logging data to determine formation velocities. Of particular interest is the ability of these methods to resolve the P and shear/pseudoRayleigh arrivals in data from poorly-bonded cased boreholes. In synthetic open-hole data the velocity analyses yield results within 4% of the true velocities. Results from synthetic well-bonded cased hole data are generally as good as those from the open hole data. However, if the formation P-wave velocity is within roughly 10% of the plate velocity of the steel pipe (about 5.3-5.5 km/s), then there may be a resonance effect that appears to slow down the P wave slightly (on the order of 6%). For cased-hole models with no steel/cement bonding (the free-pipe situation), the measured P-wave velocities are typically 6 to 8% less than the actual formation velocities. If the formation S-wave velocity is greater than about 2.5 km/s, the S-wave velocity estimate may also be 6 to 8% low. Furthermore, increasing the thickness of either the cement layer or the fluid layer between the pipe and the cement further decreases the formation velocity estimates. Also, if the P-wave velocity is within roughly 15% of the velocity of the steel arrival, the P wave may not be resolved by the semblance method unless the data is first low-pass filtered. Initial tests show that this filtering process may adversely affect the final P-wave velocity estimate, but the details of this type of approach have not been studied. The P wave is resolved. by spectral analysis of the original, nnfiltered data. For cased-hole models with no cement/formation bonding (the unbonded-casing 366 Block et al. situation), formation S-wave velocities are estimated to within 3% relative error, and the formation P-wave velocity is estimated to within 2% error in a slow formation. However, for P-wave velocities between 3.4 km/s and 5.94 km/a, the P wave cannot be resolved by spectral analysis, and it is resolved by the semblance method only in the model with the low velocity (3.4 km/s).","PeriodicalId":306484,"journal":{"name":"The Log Analyst","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Velocity Analysis of Multi-Receiver Full Waveform Acoustic Logging Data In Open and Cased Holes\",\"authors\":\"L. Block, Chuen Hon Arthur Cheng, G. Duckworth\",\"doi\":\"10.1190/1.1893094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Average semblance and maximum-likelihood spectral analyses are applied to synthetic and field full waveform acoustic logging data to determine formation velocities. Of particular interest is the ability of these methods to resolve the P and shear/pseudoRayleigh arrivals in data from poorly-bonded cased boreholes. In synthetic open-hole data the velocity analyses yield results within 4% of the true velocities. Results from synthetic well-bonded cased hole data are generally as good as those from the open hole data. However, if the formation P-wave velocity is within roughly 10% of the plate velocity of the steel pipe (about 5.3-5.5 km/s), then there may be a resonance effect that appears to slow down the P wave slightly (on the order of 6%). For cased-hole models with no steel/cement bonding (the free-pipe situation), the measured P-wave velocities are typically 6 to 8% less than the actual formation velocities. If the formation S-wave velocity is greater than about 2.5 km/s, the S-wave velocity estimate may also be 6 to 8% low. Furthermore, increasing the thickness of either the cement layer or the fluid layer between the pipe and the cement further decreases the formation velocity estimates. Also, if the P-wave velocity is within roughly 15% of the velocity of the steel arrival, the P wave may not be resolved by the semblance method unless the data is first low-pass filtered. Initial tests show that this filtering process may adversely affect the final P-wave velocity estimate, but the details of this type of approach have not been studied. The P wave is resolved. by spectral analysis of the original, nnfiltered data. For cased-hole models with no cement/formation bonding (the unbonded-casing 366 Block et al. situation), formation S-wave velocities are estimated to within 3% relative error, and the formation P-wave velocity is estimated to within 2% error in a slow formation. However, for P-wave velocities between 3.4 km/s and 5.94 km/a, the P wave cannot be resolved by spectral analysis, and it is resolved by the semblance method only in the model with the low velocity (3.4 km/s).\",\"PeriodicalId\":306484,\"journal\":{\"name\":\"The Log Analyst\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Log Analyst\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/1.1893094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Log Analyst","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/1.1893094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Velocity Analysis of Multi-Receiver Full Waveform Acoustic Logging Data In Open and Cased Holes
Average semblance and maximum-likelihood spectral analyses are applied to synthetic and field full waveform acoustic logging data to determine formation velocities. Of particular interest is the ability of these methods to resolve the P and shear/pseudoRayleigh arrivals in data from poorly-bonded cased boreholes. In synthetic open-hole data the velocity analyses yield results within 4% of the true velocities. Results from synthetic well-bonded cased hole data are generally as good as those from the open hole data. However, if the formation P-wave velocity is within roughly 10% of the plate velocity of the steel pipe (about 5.3-5.5 km/s), then there may be a resonance effect that appears to slow down the P wave slightly (on the order of 6%). For cased-hole models with no steel/cement bonding (the free-pipe situation), the measured P-wave velocities are typically 6 to 8% less than the actual formation velocities. If the formation S-wave velocity is greater than about 2.5 km/s, the S-wave velocity estimate may also be 6 to 8% low. Furthermore, increasing the thickness of either the cement layer or the fluid layer between the pipe and the cement further decreases the formation velocity estimates. Also, if the P-wave velocity is within roughly 15% of the velocity of the steel arrival, the P wave may not be resolved by the semblance method unless the data is first low-pass filtered. Initial tests show that this filtering process may adversely affect the final P-wave velocity estimate, but the details of this type of approach have not been studied. The P wave is resolved. by spectral analysis of the original, nnfiltered data. For cased-hole models with no cement/formation bonding (the unbonded-casing 366 Block et al. situation), formation S-wave velocities are estimated to within 3% relative error, and the formation P-wave velocity is estimated to within 2% error in a slow formation. However, for P-wave velocities between 3.4 km/s and 5.94 km/a, the P wave cannot be resolved by spectral analysis, and it is resolved by the semblance method only in the model with the low velocity (3.4 km/s).