基于更宽人脸数据集的Viola-Jones人脸检测算法

Sumanto, B. Wijonarko, Muhammad Qommarudin, Aji Sudibyo, Pudji Widodo, Afit Muhammad Lukman
{"title":"基于更宽人脸数据集的Viola-Jones人脸检测算法","authors":"Sumanto, B. Wijonarko, Muhammad Qommarudin, Aji Sudibyo, Pudji Widodo, Afit Muhammad Lukman","doi":"10.1109/CITSM56380.2022.9935830","DOIUrl":null,"url":null,"abstract":"Face detection has been one of the most explored problems in computer vision for several years. Using the WIDER FACES data set, this study investigates how the Viola-Jones method can be used to identify faces in 179 photos and how it performs compared to other face detection algorithms. In a previous study for face detection using Viola-jones, the highest accuracy results were obtained at 90.9% for facial images and 75.5% for non-face images. In this study, the Viola-Jones approach had a 100 percent success rate. This approach will be used in the MATLAB algorithm for face identification to get better results than currently available. Experiments using two classes had promising results.","PeriodicalId":342813,"journal":{"name":"2022 10th International Conference on Cyber and IT Service Management (CITSM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Viola-Jones Algorithm for Face Detection using Wider Face Dataset\",\"authors\":\"Sumanto, B. Wijonarko, Muhammad Qommarudin, Aji Sudibyo, Pudji Widodo, Afit Muhammad Lukman\",\"doi\":\"10.1109/CITSM56380.2022.9935830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face detection has been one of the most explored problems in computer vision for several years. Using the WIDER FACES data set, this study investigates how the Viola-Jones method can be used to identify faces in 179 photos and how it performs compared to other face detection algorithms. In a previous study for face detection using Viola-jones, the highest accuracy results were obtained at 90.9% for facial images and 75.5% for non-face images. In this study, the Viola-Jones approach had a 100 percent success rate. This approach will be used in the MATLAB algorithm for face identification to get better results than currently available. Experiments using two classes had promising results.\",\"PeriodicalId\":342813,\"journal\":{\"name\":\"2022 10th International Conference on Cyber and IT Service Management (CITSM)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 10th International Conference on Cyber and IT Service Management (CITSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITSM56380.2022.9935830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Conference on Cyber and IT Service Management (CITSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITSM56380.2022.9935830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多年来,人脸检测一直是计算机视觉领域研究最多的问题之一。使用WIDER FACES数据集,本研究探讨了如何使用Viola-Jones方法识别179张照片中的人脸,以及与其他人脸检测算法相比,该方法的表现如何。在之前的一项使用Viola-jones进行的人脸检测研究中,人脸图像的准确率最高,为90.9%,非人脸图像的准确率最高,为75.5%。在这项研究中,维奥拉-琼斯方法有100%的成功率。这种方法将在MATLAB算法中用于人脸识别,得到比目前更好的结果。使用两个类的实验取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Viola-Jones Algorithm for Face Detection using Wider Face Dataset
Face detection has been one of the most explored problems in computer vision for several years. Using the WIDER FACES data set, this study investigates how the Viola-Jones method can be used to identify faces in 179 photos and how it performs compared to other face detection algorithms. In a previous study for face detection using Viola-jones, the highest accuracy results were obtained at 90.9% for facial images and 75.5% for non-face images. In this study, the Viola-Jones approach had a 100 percent success rate. This approach will be used in the MATLAB algorithm for face identification to get better results than currently available. Experiments using two classes had promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Detection in Wireless Sensor Networks Data Using Random Under Sampling and Extra-Tree Algorithm Automated House Budget Plan Application Analysis of E-Government Service Quality using E-GovQual and Importance Performance Analysis (IPA) Analysis of Public Sentiment Using The K-Nearest Neighbor (k-NN) Algorithm and Lexicon Based on Indonesian Television Shows on Social Media Twitter Heuristic and Webuse Method to Evaluate UI/UX of Faculty Website
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1