基于任务的前庭结石治疗系列机器人运动学设计

G. Berselli, R. Falconi, G. Vassura, G. Modugno
{"title":"基于任务的前庭结石治疗系列机器人运动学设计","authors":"G. Berselli, R. Falconi, G. Vassura, G. Modugno","doi":"10.1109/ICORR.2007.4428419","DOIUrl":null,"url":null,"abstract":"Benign Paroxymal Positional Vertigo and variants, collectively called \"vestibular lithiasis\", designate a common disorder caused by a malfunction of the inner ear. These pathologies are connected with the presence of dense particles within the semicircular canals which interfere with the sensing capabilities of angular velocity in the patient, causing nystagmus and vertigo. Some of these conditions can be treated by repositioning maneuvers physically done by the doctor that moves the head of the patient along different poses in space. Despite the fact that the treatment shows a success rate up to 80-90%, the failure rate remains highly significant and it is proven that precision repeatability and unlimited 360deg manoeuvrability can improve diagnostic and treatment potential for overcoming this kind of vertigo. In this paper the kinematic design of a serial robot that will execute repositioning maneuvers automatically is performed through a simplified task based kinematic design technique. The aim of the method is to find the minimum number of degrees of freedom to carry out a set of given tasks as well as the manipulator's topology and the Denavit-Hartenberg parameters. The proposed procedure firstly minimizes the number of degrees of freedom only and then a cost function connected to the total link length.","PeriodicalId":197465,"journal":{"name":"2007 IEEE 10th International Conference on Rehabilitation Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Task Based Kinematic Design of a Serial Robot for the Treatment of Vestibular Lithiasis\",\"authors\":\"G. Berselli, R. Falconi, G. Vassura, G. Modugno\",\"doi\":\"10.1109/ICORR.2007.4428419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benign Paroxymal Positional Vertigo and variants, collectively called \\\"vestibular lithiasis\\\", designate a common disorder caused by a malfunction of the inner ear. These pathologies are connected with the presence of dense particles within the semicircular canals which interfere with the sensing capabilities of angular velocity in the patient, causing nystagmus and vertigo. Some of these conditions can be treated by repositioning maneuvers physically done by the doctor that moves the head of the patient along different poses in space. Despite the fact that the treatment shows a success rate up to 80-90%, the failure rate remains highly significant and it is proven that precision repeatability and unlimited 360deg manoeuvrability can improve diagnostic and treatment potential for overcoming this kind of vertigo. In this paper the kinematic design of a serial robot that will execute repositioning maneuvers automatically is performed through a simplified task based kinematic design technique. The aim of the method is to find the minimum number of degrees of freedom to carry out a set of given tasks as well as the manipulator's topology and the Denavit-Hartenberg parameters. The proposed procedure firstly minimizes the number of degrees of freedom only and then a cost function connected to the total link length.\",\"PeriodicalId\":197465,\"journal\":{\"name\":\"2007 IEEE 10th International Conference on Rehabilitation Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 10th International Conference on Rehabilitation Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2007.4428419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 10th International Conference on Rehabilitation Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2007.4428419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

良性阵发性位置性眩晕及其变体,统称为“前庭结石”,是一种由内耳功能障碍引起的常见疾病。这些病理与半规管内致密颗粒的存在有关,这些颗粒干扰了患者对角速度的感知能力,导致眼球震颤和眩晕。其中一些情况可以通过医生在空间中沿不同姿势移动患者头部的物理重新定位操作来治疗。尽管治疗成功率高达80-90%,但失败率仍然很高,事实证明,精确可重复性和无限360度可操作性可以提高诊断和治疗潜力,以克服这种眩晕。本文采用一种简化的基于任务的运动学设计技术,对自动执行重定位动作的串联机器人进行了运动学设计。该方法的目的是找到执行一组给定任务的最小自由度,以及机械手的拓扑结构和Denavit-Hartenberg参数。该方法首先将自由度最小化,然后给出与总连杆长度相连接的代价函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Task Based Kinematic Design of a Serial Robot for the Treatment of Vestibular Lithiasis
Benign Paroxymal Positional Vertigo and variants, collectively called "vestibular lithiasis", designate a common disorder caused by a malfunction of the inner ear. These pathologies are connected with the presence of dense particles within the semicircular canals which interfere with the sensing capabilities of angular velocity in the patient, causing nystagmus and vertigo. Some of these conditions can be treated by repositioning maneuvers physically done by the doctor that moves the head of the patient along different poses in space. Despite the fact that the treatment shows a success rate up to 80-90%, the failure rate remains highly significant and it is proven that precision repeatability and unlimited 360deg manoeuvrability can improve diagnostic and treatment potential for overcoming this kind of vertigo. In this paper the kinematic design of a serial robot that will execute repositioning maneuvers automatically is performed through a simplified task based kinematic design technique. The aim of the method is to find the minimum number of degrees of freedom to carry out a set of given tasks as well as the manipulator's topology and the Denavit-Hartenberg parameters. The proposed procedure firstly minimizes the number of degrees of freedom only and then a cost function connected to the total link length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the effect on walking of balance-related degrees of freedom in a robotic gait training device Biomimetic Tactile Sensor for Control of Grip Haptic Device System for Upper Limb Motor and Cognitive Function Rehabilitation: Grip Movement Comparison between Normal Subjects and Stroke Patients Exoskeleton design for functional rehabilitation in patients with neurological disorders and stroke Characterization of a New Type of Dry Electrodes for Long-Term Recordings of Surface-Electromyogram
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1