无约束人脸识别的端到端协议和性能指标

James A. Duncan, N. Kalka, Brianna Maze, Anil K. Jain
{"title":"无约束人脸识别的端到端协议和性能指标","authors":"James A. Duncan, N. Kalka, Brianna Maze, Anil K. Jain","doi":"10.1109/ICB45273.2019.8987345","DOIUrl":null,"url":null,"abstract":"Face recognition algorithms have received substantial attention over the past decade resulting in significant performance improvements. Arguably, improvement can be attributed to the wide spread availability of large face training sets, GPU computing to train state-of-the-art deep learning algorithms, and curation of challenging test sets that continue to push the state-of-the-art. Traditionally, protocol design and algorithm evaluation have primarily focused on measuring performance of specific stages of the biometric pipeline (e.g., face detection, feature extraction, or recognition) and do not capture errors that may propagate from face input to identification output in an end-to-end (E2E) manner. In this paper, we address this problem by expanding upon the novel open-set E2E identification protocols created for the IARPA Janus program. In particular, we describe in detail the joint detection, tracking, clustering, and recognition protocols, introduce novel E2E performance metrics, and provide rigorous evaluation using the IARPA Janus Benchmark C (IJB-C) and S (IJB-S) datasets.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"End-to-End Protocols and Performance Metrics For Unconstrained Face Recognition\",\"authors\":\"James A. Duncan, N. Kalka, Brianna Maze, Anil K. Jain\",\"doi\":\"10.1109/ICB45273.2019.8987345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition algorithms have received substantial attention over the past decade resulting in significant performance improvements. Arguably, improvement can be attributed to the wide spread availability of large face training sets, GPU computing to train state-of-the-art deep learning algorithms, and curation of challenging test sets that continue to push the state-of-the-art. Traditionally, protocol design and algorithm evaluation have primarily focused on measuring performance of specific stages of the biometric pipeline (e.g., face detection, feature extraction, or recognition) and do not capture errors that may propagate from face input to identification output in an end-to-end (E2E) manner. In this paper, we address this problem by expanding upon the novel open-set E2E identification protocols created for the IARPA Janus program. In particular, we describe in detail the joint detection, tracking, clustering, and recognition protocols, introduce novel E2E performance metrics, and provide rigorous evaluation using the IARPA Janus Benchmark C (IJB-C) and S (IJB-S) datasets.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去的十年中,人脸识别算法受到了极大的关注,导致了显着的性能改进。可以说,这种进步可以归功于大型人脸训练集的广泛可用性、用于训练最先进深度学习算法的GPU计算,以及不断推动最先进技术的具有挑战性的测试集的管理。传统上,协议设计和算法评估主要侧重于测量生物识别管道特定阶段的性能(例如,人脸检测、特征提取或识别),而不捕捉可能以端到端(E2E)方式从人脸输入传播到识别输出的错误。在本文中,我们通过扩展为IARPA Janus计划创建的新型开集端到端识别协议来解决这个问题。特别是,我们详细描述了联合检测、跟踪、聚类和识别协议,引入了新的端到端性能指标,并使用IARPA Janus基准C (IJB-C)和S (IJB-S)数据集进行了严格的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
End-to-End Protocols and Performance Metrics For Unconstrained Face Recognition
Face recognition algorithms have received substantial attention over the past decade resulting in significant performance improvements. Arguably, improvement can be attributed to the wide spread availability of large face training sets, GPU computing to train state-of-the-art deep learning algorithms, and curation of challenging test sets that continue to push the state-of-the-art. Traditionally, protocol design and algorithm evaluation have primarily focused on measuring performance of specific stages of the biometric pipeline (e.g., face detection, feature extraction, or recognition) and do not capture errors that may propagate from face input to identification output in an end-to-end (E2E) manner. In this paper, we address this problem by expanding upon the novel open-set E2E identification protocols created for the IARPA Janus program. In particular, we describe in detail the joint detection, tracking, clustering, and recognition protocols, introduce novel E2E performance metrics, and provide rigorous evaluation using the IARPA Janus Benchmark C (IJB-C) and S (IJB-S) datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PPG2Live: Using dual PPG for active authentication and liveness detection A New Approach for EEG-Based Biometric Authentication Using Auditory Stimulation A novel scheme to address the fusion uncertainty in multi-modal continuous authentication schemes on mobile devices Sclera Segmentation Benchmarking Competition in Cross-resolution Environment Fingerprint Presentation Attack Detection utilizing Time-Series, Color Fingerprint Captures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1