{"title":"探索编程语义分析与深度学习模型","authors":"Yihan Lu, I-Han Hsiao","doi":"10.1145/3303772.3303823","DOIUrl":null,"url":null,"abstract":"There are numerous studies have reported the effectiveness of example-based programming learning. However, less is explored recommending code examples with advanced Machine Learning-based models. In this work, we propose a new method to explore the semantic analytics between programming codes and the annotations. We hypothesize that these semantics analytics will capture mass amount of valuable information that can be used as features to build predictive models. We evaluated the proposed semantic analytics extraction method with multiple deep learning algorithms. Results showed that deep learning models outperformed other models and baseline in most cases. Further analysis indicated that in special cases, the proposed method outperformed deep learning models by restricting false-positive classifications.","PeriodicalId":382957,"journal":{"name":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploring Programming Semantic Analytics with Deep Learning Models\",\"authors\":\"Yihan Lu, I-Han Hsiao\",\"doi\":\"10.1145/3303772.3303823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are numerous studies have reported the effectiveness of example-based programming learning. However, less is explored recommending code examples with advanced Machine Learning-based models. In this work, we propose a new method to explore the semantic analytics between programming codes and the annotations. We hypothesize that these semantics analytics will capture mass amount of valuable information that can be used as features to build predictive models. We evaluated the proposed semantic analytics extraction method with multiple deep learning algorithms. Results showed that deep learning models outperformed other models and baseline in most cases. Further analysis indicated that in special cases, the proposed method outperformed deep learning models by restricting false-positive classifications.\",\"PeriodicalId\":382957,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Learning Analytics & Knowledge\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3303772.3303823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3303772.3303823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Programming Semantic Analytics with Deep Learning Models
There are numerous studies have reported the effectiveness of example-based programming learning. However, less is explored recommending code examples with advanced Machine Learning-based models. In this work, we propose a new method to explore the semantic analytics between programming codes and the annotations. We hypothesize that these semantics analytics will capture mass amount of valuable information that can be used as features to build predictive models. We evaluated the proposed semantic analytics extraction method with multiple deep learning algorithms. Results showed that deep learning models outperformed other models and baseline in most cases. Further analysis indicated that in special cases, the proposed method outperformed deep learning models by restricting false-positive classifications.