通过各种模板进行健壮的对象跟踪

Siyuan Wu, Xuelong Li, Xiaoqiang Lu
{"title":"通过各种模板进行健壮的对象跟踪","authors":"Siyuan Wu, Xuelong Li, Xiaoqiang Lu","doi":"10.1109/CITS.2016.7546394","DOIUrl":null,"url":null,"abstract":"Robust object tracking is a challenging task in computer vision. Since the appearance of the target changes frequently, how to build and update the appearance model is crucial. In this paper, to better represent the object dynamically, we propose a robust object tracker based on diverse templates. First, we construct diverse multiple templates using the determinantal point process algorithm adaptively, which efficiently detects the most diverse subset of a set. Second, a patch-matching method is employed to propagate every template density to the next frame, and a voting map for each template is constructed by all matching patches. Third, a weighted Bayesian filter framework aggregates all voting maps to optimize target state. Finally, in order to maintain the diversity of multiple templates, we dynamically add, remove and replace the target from templates. Experimental results prove that the proposed method outperforms state-of-the-art tracking algorithms significantly in terms of center position errors and success rates.","PeriodicalId":340958,"journal":{"name":"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust object tracking via diverse templates\",\"authors\":\"Siyuan Wu, Xuelong Li, Xiaoqiang Lu\",\"doi\":\"10.1109/CITS.2016.7546394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust object tracking is a challenging task in computer vision. Since the appearance of the target changes frequently, how to build and update the appearance model is crucial. In this paper, to better represent the object dynamically, we propose a robust object tracker based on diverse templates. First, we construct diverse multiple templates using the determinantal point process algorithm adaptively, which efficiently detects the most diverse subset of a set. Second, a patch-matching method is employed to propagate every template density to the next frame, and a voting map for each template is constructed by all matching patches. Third, a weighted Bayesian filter framework aggregates all voting maps to optimize target state. Finally, in order to maintain the diversity of multiple templates, we dynamically add, remove and replace the target from templates. Experimental results prove that the proposed method outperforms state-of-the-art tracking algorithms significantly in terms of center position errors and success rates.\",\"PeriodicalId\":340958,\"journal\":{\"name\":\"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITS.2016.7546394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITS.2016.7546394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

鲁棒目标跟踪是计算机视觉领域一个具有挑战性的课题。由于目标的外观经常变化,因此如何构建和更新外观模型至关重要。为了更好地动态表示目标,本文提出了一种基于多模板的鲁棒目标跟踪器。首先,我们利用确定性点处理算法自适应地构造多样的多模板,有效地检测出集合中最多样的子集。其次,采用补丁匹配方法将每个模板密度传播到下一帧,并由所有匹配的补丁构建每个模板的投票图;第三,加权贝叶斯过滤框架聚合所有投票映射以优化目标状态。最后,为了保持多个模板的多样性,我们在模板中动态添加、移除和替换目标。实验结果表明,该方法在中心位置误差和成功率方面明显优于现有的跟踪算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust object tracking via diverse templates
Robust object tracking is a challenging task in computer vision. Since the appearance of the target changes frequently, how to build and update the appearance model is crucial. In this paper, to better represent the object dynamically, we propose a robust object tracker based on diverse templates. First, we construct diverse multiple templates using the determinantal point process algorithm adaptively, which efficiently detects the most diverse subset of a set. Second, a patch-matching method is employed to propagate every template density to the next frame, and a voting map for each template is constructed by all matching patches. Third, a weighted Bayesian filter framework aggregates all voting maps to optimize target state. Finally, in order to maintain the diversity of multiple templates, we dynamically add, remove and replace the target from templates. Experimental results prove that the proposed method outperforms state-of-the-art tracking algorithms significantly in terms of center position errors and success rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recursive construction of quasi-cyclic cycle LDPC codes based on replacement products Design and realization of IMA/DIMA system management based on avionics switched network Mining co-location patterns with spatial distribution characteristics Multilayer perceptron for modulation recognition cognitive radio system Joint hierarchical modulation and network coding for asymmetric data transmission in wireless cooperative communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1