鸟类食物贮藏行为的记忆增强强化学习模型

Johanni Brea, W. Gerstner
{"title":"鸟类食物贮藏行为的记忆增强强化学习模型","authors":"Johanni Brea, W. Gerstner","doi":"10.32470/ccn.2019.1316-0","DOIUrl":null,"url":null,"abstract":"Birds of the crow family are well known for their complex cognition. In laboratory experiments it has been observed that jays adapt food caching strategies to anticipated needs and rely on a memory of the what, where and when of previous caching events for cache recovery. While this behaviour is well studied, little is known about the algorithms and neural processes that produce this behaviour. We present a computational model and propose a neural implementation of food caching behaviour. Our model features latent hunger variables for motivational control, an associative memory for snapshots of the sensory states during caching events, a system memory consolidation for flexible decoding of the age of a memory, a stimulus-driven retrieval mechanism, and rewardmodulated update of retrieval and caching policies during inspection of caches. We show that our model is in quantitative agreement with the results of 22 behavioural experiments. Our methodology of a formalization of experimental protocols via a domain-specific language is transferable to other domains and may serve as a tool to design new experiments and foster collaboration between experimentalists and theoreticians. Our model is an example of a structured reinforcement learning algorithm that could have evolved in species that operate in partially observable environments.","PeriodicalId":281121,"journal":{"name":"2019 Conference on Cognitive Computational Neuroscience","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Memory-Augmented Reinforcement Learning Model of Food Caching Behaviour in Birds\",\"authors\":\"Johanni Brea, W. Gerstner\",\"doi\":\"10.32470/ccn.2019.1316-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Birds of the crow family are well known for their complex cognition. In laboratory experiments it has been observed that jays adapt food caching strategies to anticipated needs and rely on a memory of the what, where and when of previous caching events for cache recovery. While this behaviour is well studied, little is known about the algorithms and neural processes that produce this behaviour. We present a computational model and propose a neural implementation of food caching behaviour. Our model features latent hunger variables for motivational control, an associative memory for snapshots of the sensory states during caching events, a system memory consolidation for flexible decoding of the age of a memory, a stimulus-driven retrieval mechanism, and rewardmodulated update of retrieval and caching policies during inspection of caches. We show that our model is in quantitative agreement with the results of 22 behavioural experiments. Our methodology of a formalization of experimental protocols via a domain-specific language is transferable to other domains and may serve as a tool to design new experiments and foster collaboration between experimentalists and theoreticians. Our model is an example of a structured reinforcement learning algorithm that could have evolved in species that operate in partially observable environments.\",\"PeriodicalId\":281121,\"journal\":{\"name\":\"2019 Conference on Cognitive Computational Neuroscience\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Cognitive Computational Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32470/ccn.2019.1316-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Cognitive Computational Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2019.1316-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乌鸦科的鸟类以其复杂的认知能力而闻名。在实验室实验中,人们观察到松鸦根据预期的需要调整食物贮藏策略,并依靠对以前贮藏事件的记忆来恢复贮藏。虽然这种行为已经得到了很好的研究,但人们对产生这种行为的算法和神经过程知之甚少。我们提出了一个计算模型,并提出了食物缓存行为的神经实现。我们的模型具有用于动机控制的潜在饥饿变量,用于缓存事件期间感觉状态快照的联想记忆,用于灵活解码记忆年龄的系统记忆巩固,刺激驱动的检索机制,以及在检查缓存期间检索和缓存策略的奖励调制更新。我们表明我们的模型与22个行为实验的结果在定量上是一致的。我们通过特定领域语言将实验协议形式化的方法可转移到其他领域,并可作为设计新实验和促进实验学家和理论家之间合作的工具。我们的模型是一个结构化强化学习算法的例子,它可以在部分可观察环境中运行的物种中进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Memory-Augmented Reinforcement Learning Model of Food Caching Behaviour in Birds
Birds of the crow family are well known for their complex cognition. In laboratory experiments it has been observed that jays adapt food caching strategies to anticipated needs and rely on a memory of the what, where and when of previous caching events for cache recovery. While this behaviour is well studied, little is known about the algorithms and neural processes that produce this behaviour. We present a computational model and propose a neural implementation of food caching behaviour. Our model features latent hunger variables for motivational control, an associative memory for snapshots of the sensory states during caching events, a system memory consolidation for flexible decoding of the age of a memory, a stimulus-driven retrieval mechanism, and rewardmodulated update of retrieval and caching policies during inspection of caches. We show that our model is in quantitative agreement with the results of 22 behavioural experiments. Our methodology of a formalization of experimental protocols via a domain-specific language is transferable to other domains and may serve as a tool to design new experiments and foster collaboration between experimentalists and theoreticians. Our model is an example of a structured reinforcement learning algorithm that could have evolved in species that operate in partially observable environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narratives as Networks: Predicting Memory from the Structure of Naturalistic Events Subtractive gating improves generalization in working memory tasks Do LSTMs know about Principle C? Unfolding of multisensory inference in the brain and behavior Adversarial Training of Neural Encoding Models on Population Spike Trains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1