人类检测使用非负矩阵分解

Jing-Xiu Zeng, Chih-Yang Lin, Wei-Yang Lin
{"title":"人类检测使用非负矩阵分解","authors":"Jing-Xiu Zeng, Chih-Yang Lin, Wei-Yang Lin","doi":"10.1109/ICCE-TW.2015.7216949","DOIUrl":null,"url":null,"abstract":"Currently, most of the human detection methods are based on low-level features. In this paper, we proposed a middle-level feature generation method based on non-negative matrix factorization (NMF) for human detection. We also proposed an improvement scheme to guarantee that a better middle-level feature can be achieved. The proposed scheme can be applied to a complex background and the experimental results are better than those when only the low-level feature is involved.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human detection using non-negative matrix factorization\",\"authors\":\"Jing-Xiu Zeng, Chih-Yang Lin, Wei-Yang Lin\",\"doi\":\"10.1109/ICCE-TW.2015.7216949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, most of the human detection methods are based on low-level features. In this paper, we proposed a middle-level feature generation method based on non-negative matrix factorization (NMF) for human detection. We also proposed an improvement scheme to guarantee that a better middle-level feature can be achieved. The proposed scheme can be applied to a complex background and the experimental results are better than those when only the low-level feature is involved.\",\"PeriodicalId\":340402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2015.7216949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,大多数人类检测方法都是基于底层特征。本文提出了一种基于非负矩阵分解(NMF)的中级特征生成方法。我们还提出了一个改进方案,以保证能够实现更好的中间层特性。该方法可以应用于复杂背景下,实验结果优于只考虑底层特征时的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human detection using non-negative matrix factorization
Currently, most of the human detection methods are based on low-level features. In this paper, we proposed a middle-level feature generation method based on non-negative matrix factorization (NMF) for human detection. We also proposed an improvement scheme to guarantee that a better middle-level feature can be achieved. The proposed scheme can be applied to a complex background and the experimental results are better than those when only the low-level feature is involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fuzzy-rough set based ontology for hybrid recommendation Monitoring system of patient position based on wireless body area sensor network Automation control algorithms in gas mixture for preterm infant oxygen therapy Interframe hole filling for DIBR in 3D videos Automatic recognition of audio event using dynamic local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1