可伸缩的硬件支持条件并行化

Zheng Li, Olivier Certner, J. Duato, O. Temam
{"title":"可伸缩的硬件支持条件并行化","authors":"Zheng Li, Olivier Certner, J. Duato, O. Temam","doi":"10.1145/1854273.1854297","DOIUrl":null,"url":null,"abstract":"Parallel programming approaches based on task division/-spawning are getting increasingly popular because they provide for a simple and elegant abstraction of parallelization, while achieving good performance on workloads which are traditionally complex to parallelize due to the complex control flow and data structures involved. The ability to quickly distribute fine-granularity tasks among many cores is key to the efficiency and scalability of such division-based parallel programming approaches. For this reason, several hardware supports for work stealing environments have already been proposed. However, they all rely on a central hardware structure for distributing tasks among cores, which hampers the scalability and efficiency of these schemes. In this paper, we focus on conditional division, a division-based parallel approach which provides the additional benefit, over work-stealing approaches, of releasing the user from dealing with task granularity and which does not clog hardware resources with an exceedingly large number of small tasks. For this type of division-based approaches, we show that it is possible to design hardware support for speeding up task division that entirely relies on local information, and which thus exhibits good scalability properties.","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Scalable hardware support for conditional parallelization\",\"authors\":\"Zheng Li, Olivier Certner, J. Duato, O. Temam\",\"doi\":\"10.1145/1854273.1854297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel programming approaches based on task division/-spawning are getting increasingly popular because they provide for a simple and elegant abstraction of parallelization, while achieving good performance on workloads which are traditionally complex to parallelize due to the complex control flow and data structures involved. The ability to quickly distribute fine-granularity tasks among many cores is key to the efficiency and scalability of such division-based parallel programming approaches. For this reason, several hardware supports for work stealing environments have already been proposed. However, they all rely on a central hardware structure for distributing tasks among cores, which hampers the scalability and efficiency of these schemes. In this paper, we focus on conditional division, a division-based parallel approach which provides the additional benefit, over work-stealing approaches, of releasing the user from dealing with task granularity and which does not clog hardware resources with an exceedingly large number of small tasks. For this type of division-based approaches, we show that it is possible to design hardware support for speeding up task division that entirely relies on local information, and which thus exhibits good scalability properties.\",\"PeriodicalId\":422461,\"journal\":{\"name\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1854273.1854297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于任务划分/生成的并行编程方法正变得越来越流行,因为它们提供了简单而优雅的并行抽象,同时在传统上由于涉及复杂的控制流和数据结构而难以并行化的工作负载上实现良好的性能。在多个核之间快速分配细粒度任务的能力是这种基于除法的并行编程方法的效率和可伸缩性的关键。由于这个原因,已经提出了几种对工作窃取环境的硬件支持。然而,它们都依赖于一个中央硬件结构来在核心之间分配任务,这阻碍了这些方案的可扩展性和效率。在本文中,我们将重点放在条件除法上,这是一种基于除法的并行方法,与窃取工作的方法相比,它提供了额外的好处,即将用户从处理任务粒度中解放出来,并且不会因为大量的小任务而阻塞硬件资源。对于这种基于划分的方法,我们表明可以设计硬件支持来加速完全依赖于本地信息的任务划分,从而表现出良好的可伸缩性属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable hardware support for conditional parallelization
Parallel programming approaches based on task division/-spawning are getting increasingly popular because they provide for a simple and elegant abstraction of parallelization, while achieving good performance on workloads which are traditionally complex to parallelize due to the complex control flow and data structures involved. The ability to quickly distribute fine-granularity tasks among many cores is key to the efficiency and scalability of such division-based parallel programming approaches. For this reason, several hardware supports for work stealing environments have already been proposed. However, they all rely on a central hardware structure for distributing tasks among cores, which hampers the scalability and efficiency of these schemes. In this paper, we focus on conditional division, a division-based parallel approach which provides the additional benefit, over work-stealing approaches, of releasing the user from dealing with task granularity and which does not clog hardware resources with an exceedingly large number of small tasks. For this type of division-based approaches, we show that it is possible to design hardware support for speeding up task division that entirely relies on local information, and which thus exhibits good scalability properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing task creation and termination overhead in explicitly parallel programs An intra-tile cache set balancing scheme NUcache: A multicore cache organization based on Next-Use distance Towards a science of parallel programming Discovering and understanding performance bottlenecks in transactional applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1