{"title":"具有新的基于关键点的adaBoost特性的可视化对象分类","authors":"Taoufik Bdiri, F. Moutarde, B. Steux","doi":"10.1109/IVS.2009.5164310","DOIUrl":null,"url":null,"abstract":"We present promising results for visual object categorization, obtained with adaBoost using new original “keypoints-based features”. These weak-classifiers produce a boolean response based on presence or absence in the tested image of a “keypoint” (a kind of SURF interest point) with a descriptor sufficiently similar (i.e. within a given distance) to a reference descriptor characterizing the feature. A first experiment was conducted on a public image dataset containing lateral-viewed cars, yielding 95% recall with 95% precision on test set. Preliminary tests on a small subset of a pedestrians database also gives promising 97% recall with 92 % precision, which shows the generality of our new family of features. Moreover, analysis of the positions of adaBoost-selected keypoints show that they correspond to a specific part of the object category (such as “wheel” or “side skirt” in the case of lateral-cars) and thus have a “semantic” meaning. We also made a first test on video for detecting vehicles from adaBoost-selected keypoints filtered in real-time from all detected keypoints.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Visual object categorization with new keypoint-based adaBoost features\",\"authors\":\"Taoufik Bdiri, F. Moutarde, B. Steux\",\"doi\":\"10.1109/IVS.2009.5164310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present promising results for visual object categorization, obtained with adaBoost using new original “keypoints-based features”. These weak-classifiers produce a boolean response based on presence or absence in the tested image of a “keypoint” (a kind of SURF interest point) with a descriptor sufficiently similar (i.e. within a given distance) to a reference descriptor characterizing the feature. A first experiment was conducted on a public image dataset containing lateral-viewed cars, yielding 95% recall with 95% precision on test set. Preliminary tests on a small subset of a pedestrians database also gives promising 97% recall with 92 % precision, which shows the generality of our new family of features. Moreover, analysis of the positions of adaBoost-selected keypoints show that they correspond to a specific part of the object category (such as “wheel” or “side skirt” in the case of lateral-cars) and thus have a “semantic” meaning. We also made a first test on video for detecting vehicles from adaBoost-selected keypoints filtered in real-time from all detected keypoints.\",\"PeriodicalId\":396749,\"journal\":{\"name\":\"2009 IEEE Intelligent Vehicles Symposium\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2009.5164310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual object categorization with new keypoint-based adaBoost features
We present promising results for visual object categorization, obtained with adaBoost using new original “keypoints-based features”. These weak-classifiers produce a boolean response based on presence or absence in the tested image of a “keypoint” (a kind of SURF interest point) with a descriptor sufficiently similar (i.e. within a given distance) to a reference descriptor characterizing the feature. A first experiment was conducted on a public image dataset containing lateral-viewed cars, yielding 95% recall with 95% precision on test set. Preliminary tests on a small subset of a pedestrians database also gives promising 97% recall with 92 % precision, which shows the generality of our new family of features. Moreover, analysis of the positions of adaBoost-selected keypoints show that they correspond to a specific part of the object category (such as “wheel” or “side skirt” in the case of lateral-cars) and thus have a “semantic” meaning. We also made a first test on video for detecting vehicles from adaBoost-selected keypoints filtered in real-time from all detected keypoints.