基于轨道参数变化的低轨道卫星电力子系统设计中的电源选型

O. Shekoofa, M. Taherbaneh
{"title":"基于轨道参数变化的低轨道卫星电力子系统设计中的电源选型","authors":"O. Shekoofa, M. Taherbaneh","doi":"10.1109/RAST.2009.5158297","DOIUrl":null,"url":null,"abstract":"This paper intends to review and analyze the approach of power source sizing, which is an important step in Electrical Power Subsystem (EPS) design, based on change in orbit parameters. There are two main objectives for doing this research: 1) understanding the impacts of the orbital parameters change and the mechanisms of their interactions with the EPS design and operation, 2) evaluation of the importance of their effects. To this end, a typical LEO micro-satellite has been considered in different orbits, to investigate the impacts of variation in the main orbit parameters e.g. altitude and inclination angle. Then the sizing, operation and performance of power sources have been evaluated via comparing the results of in-orbit simulations of EPS operation. In addition, some indirect impacts of the orbit parameters change are evaluated, by analysis and calculation of the interaction between EPS and other subsystems. The results support and show how the sizing and operation of solar array and battery are under the influence of orbit parameters change via certain factors, such as orbit period, duration and the fraction of eclipse/sunlit phases, received solar irradiance by solar panels, and received thermal fluxes from the Sun. According to the acquired results, any altitude increment leads to have better margins in power source sizing but there is an optimum value for inclination angle from this point of view.","PeriodicalId":412236,"journal":{"name":"2009 4th International Conference on Recent Advances in Space Technologies","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power sources sizing in electrical power subsystem design based on orbit parameters change in LEO satellites\",\"authors\":\"O. Shekoofa, M. Taherbaneh\",\"doi\":\"10.1109/RAST.2009.5158297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper intends to review and analyze the approach of power source sizing, which is an important step in Electrical Power Subsystem (EPS) design, based on change in orbit parameters. There are two main objectives for doing this research: 1) understanding the impacts of the orbital parameters change and the mechanisms of their interactions with the EPS design and operation, 2) evaluation of the importance of their effects. To this end, a typical LEO micro-satellite has been considered in different orbits, to investigate the impacts of variation in the main orbit parameters e.g. altitude and inclination angle. Then the sizing, operation and performance of power sources have been evaluated via comparing the results of in-orbit simulations of EPS operation. In addition, some indirect impacts of the orbit parameters change are evaluated, by analysis and calculation of the interaction between EPS and other subsystems. The results support and show how the sizing and operation of solar array and battery are under the influence of orbit parameters change via certain factors, such as orbit period, duration and the fraction of eclipse/sunlit phases, received solar irradiance by solar panels, and received thermal fluxes from the Sun. According to the acquired results, any altitude increment leads to have better margins in power source sizing but there is an optimum value for inclination angle from this point of view.\",\"PeriodicalId\":412236,\"journal\":{\"name\":\"2009 4th International Conference on Recent Advances in Space Technologies\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 4th International Conference on Recent Advances in Space Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAST.2009.5158297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Conference on Recent Advances in Space Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAST.2009.5158297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于轨道参数变化的电源选型是电力子系统设计的重要环节,本文对电源选型方法进行了综述和分析。本研究的主要目的有两个:1)了解轨道参数变化对EPS设计和运行的影响及其相互作用机制;2)评估其影响的重要性。为此,以典型的低轨道微卫星为例,研究了不同轨道高度、倾角等主要轨道参数变化对低轨道微卫星运行的影响。通过对EPS运行的在轨仿真结果的比较,对动力源的尺寸、运行和性能进行了评价。此外,通过分析和计算EPS与其他子系统的相互作用,评估了轨道参数变化的一些间接影响。结果支持并显示了轨道参数的变化对太阳能电池阵和电池的尺寸和运行的影响,如轨道周期、持续时间和日蚀/日照相位的比例、太阳能电池板接收的太阳辐照度和接收的太阳热通量。根据所获得的结果,任何高度的增加都会导致电源尺寸有更好的余量,但从这个角度来看,倾角存在一个最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power sources sizing in electrical power subsystem design based on orbit parameters change in LEO satellites
This paper intends to review and analyze the approach of power source sizing, which is an important step in Electrical Power Subsystem (EPS) design, based on change in orbit parameters. There are two main objectives for doing this research: 1) understanding the impacts of the orbital parameters change and the mechanisms of their interactions with the EPS design and operation, 2) evaluation of the importance of their effects. To this end, a typical LEO micro-satellite has been considered in different orbits, to investigate the impacts of variation in the main orbit parameters e.g. altitude and inclination angle. Then the sizing, operation and performance of power sources have been evaluated via comparing the results of in-orbit simulations of EPS operation. In addition, some indirect impacts of the orbit parameters change are evaluated, by analysis and calculation of the interaction between EPS and other subsystems. The results support and show how the sizing and operation of solar array and battery are under the influence of orbit parameters change via certain factors, such as orbit period, duration and the fraction of eclipse/sunlit phases, received solar irradiance by solar panels, and received thermal fluxes from the Sun. According to the acquired results, any altitude increment leads to have better margins in power source sizing but there is an optimum value for inclination angle from this point of view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The place of small satellites in fulfilling the Earth observation requirements of a developing country Biorobotics: Innovative and low cost technologies for next generation planetary rovers Study of oscillators frequency stability in satellite communication links Monitoring of the linear infrastructure: Environmental and social impacts Space agriculture for habitation on mars and sustainable civilization on earth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1