可变带宽QMDPE及其在鲁棒光流估计中的应用

Hanzi Wang, D. Suter
{"title":"可变带宽QMDPE及其在鲁棒光流估计中的应用","authors":"Hanzi Wang, D. Suter","doi":"10.1109/ICCV.2003.1238337","DOIUrl":null,"url":null,"abstract":"Robust estimators, such as least median of squared (LMedS) residuals, M-estimators, the least trimmed squares (LTS) etc., have been employed to estimate optical flow from image sequences in recent years. However, these robust estimators have a breakdown point of no more than 50%. We propose a novel robust estimator, called variable bandwidth quick maximum density power estimator (vbQMDPE), which can tolerate more than 50% outliers. We apply the novel proposed estimator to robust optical flow estimation. Our method yields better results than most other recently proposed methods, and it has the potential to better handle multiple motion effects.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Variable bandwidth QMDPE and its application in robust optical flow estimation\",\"authors\":\"Hanzi Wang, D. Suter\",\"doi\":\"10.1109/ICCV.2003.1238337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust estimators, such as least median of squared (LMedS) residuals, M-estimators, the least trimmed squares (LTS) etc., have been employed to estimate optical flow from image sequences in recent years. However, these robust estimators have a breakdown point of no more than 50%. We propose a novel robust estimator, called variable bandwidth quick maximum density power estimator (vbQMDPE), which can tolerate more than 50% outliers. We apply the novel proposed estimator to robust optical flow estimation. Our method yields better results than most other recently proposed methods, and it has the potential to better handle multiple motion effects.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

鲁棒估计方法,如最小平方中值残差(lmed)、m估计器、最小裁剪二乘(LTS)等,近年来已被用于估计图像序列的光流。然而,这些稳健估计器的崩溃点不超过50%。我们提出了一种新的鲁棒估计器,称为可变带宽快速最大密度功率估计器(vbQMDPE),它可以容忍超过50%的异常值。我们将该估计方法应用于光流鲁棒估计。我们的方法比大多数其他最近提出的方法产生更好的结果,并且它具有更好地处理多个运动效果的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variable bandwidth QMDPE and its application in robust optical flow estimation
Robust estimators, such as least median of squared (LMedS) residuals, M-estimators, the least trimmed squares (LTS) etc., have been employed to estimate optical flow from image sequences in recent years. However, these robust estimators have a breakdown point of no more than 50%. We propose a novel robust estimator, called variable bandwidth quick maximum density power estimator (vbQMDPE), which can tolerate more than 50% outliers. We apply the novel proposed estimator to robust optical flow estimation. Our method yields better results than most other recently proposed methods, and it has the potential to better handle multiple motion effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1