动态环境中统计运动模式的获取及其在移动机器人运动规划中的应用

E. Kruse, R. Gutsche, F. Wahl
{"title":"动态环境中统计运动模式的获取及其在移动机器人运动规划中的应用","authors":"E. Kruse, R. Gutsche, F. Wahl","doi":"10.1109/IROS.1997.655089","DOIUrl":null,"url":null,"abstract":"In recent papers we (1996, 1997) have proposed a new path planning approach for mobile robots: statistical motion planning with respect to typical obstacle behavior in order to improve pre-planning in dynamic environments. In this paper, we present our experimental system: in a real environment, cameras observe the workspace in order to detect obstacle motions and to derive statistical data. We have developed new techniques based on stochastic trajectories to model obstacle behavior. Collision probabilities are calculated for polygonal objects moving on piecewise linear trajectories. The statistical data can be applied directly, thus the entire chain from raw sensor data to a stochastic assessment of robot trajectories is closed. Finally, some new work regarding different applications of statistical motion planning is outlined, including road-map approaches for pre-planning, expected time to reach the goal, and reactive behaviors.","PeriodicalId":408848,"journal":{"name":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Acquisition of statistical motion patterns in dynamic environments and their application to mobile robot motion planning\",\"authors\":\"E. Kruse, R. Gutsche, F. Wahl\",\"doi\":\"10.1109/IROS.1997.655089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent papers we (1996, 1997) have proposed a new path planning approach for mobile robots: statistical motion planning with respect to typical obstacle behavior in order to improve pre-planning in dynamic environments. In this paper, we present our experimental system: in a real environment, cameras observe the workspace in order to detect obstacle motions and to derive statistical data. We have developed new techniques based on stochastic trajectories to model obstacle behavior. Collision probabilities are calculated for polygonal objects moving on piecewise linear trajectories. The statistical data can be applied directly, thus the entire chain from raw sensor data to a stochastic assessment of robot trajectories is closed. Finally, some new work regarding different applications of statistical motion planning is outlined, including road-map approaches for pre-planning, expected time to reach the goal, and reactive behaviors.\",\"PeriodicalId\":408848,\"journal\":{\"name\":\"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1997.655089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1997.655089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

在最近的论文中,我们(1996,1997)提出了一种新的移动机器人路径规划方法:基于典型障碍行为的统计运动规划,以改善动态环境中的预规划。在本文中,我们提出了我们的实验系统:在一个真实的环境中,相机观察工作空间,以检测障碍物运动并得出统计数据。我们开发了基于随机轨迹的新技术来模拟障碍物行为。计算了沿分段线性轨迹运动的多边形物体的碰撞概率。统计数据可以直接应用,从而封闭了从原始传感器数据到机器人轨迹随机评估的整个链。最后,概述了统计运动规划的不同应用方面的一些新工作,包括预先规划的路线图方法、达到目标的预期时间和反应行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acquisition of statistical motion patterns in dynamic environments and their application to mobile robot motion planning
In recent papers we (1996, 1997) have proposed a new path planning approach for mobile robots: statistical motion planning with respect to typical obstacle behavior in order to improve pre-planning in dynamic environments. In this paper, we present our experimental system: in a real environment, cameras observe the workspace in order to detect obstacle motions and to derive statistical data. We have developed new techniques based on stochastic trajectories to model obstacle behavior. Collision probabilities are calculated for polygonal objects moving on piecewise linear trajectories. The statistical data can be applied directly, thus the entire chain from raw sensor data to a stochastic assessment of robot trajectories is closed. Finally, some new work regarding different applications of statistical motion planning is outlined, including road-map approaches for pre-planning, expected time to reach the goal, and reactive behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of actively adjustable frequency modulators via redundant actuation: the case for a five-bar finger mechanism Performance of emotional group robotic system using mass psychology Initial results from vision-based control of the Ames Marsokhod rover Information sharing among multiple robots for cooperation in cellular robotic system A wheeled multijoint robot for autonomous sewer inspection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1