基于候选基因自动选择方法的基因调控网络重构

L. Xing, Maozu Guo, Xiaoyan Liu, Chunyu Wang, Lei Wang, Yin Zhang
{"title":"基于候选基因自动选择方法的基因调控网络重构","authors":"L. Xing, Maozu Guo, Xiaoyan Liu, Chunyu Wang, Lei Wang, Yin Zhang","doi":"10.1109/BIBM.2016.7822524","DOIUrl":null,"url":null,"abstract":"The reconstruction of gene regulatory network (GRN) is a great challenge in systems biology and bioinformatics, and methods based on Bayesian network (BN) draw most of attention because of its inherent probability characteristics. As NP-hard problems, most of the BN methods often adopt the heuristic search, but they are time-consuming for biological networks with a large number of nodes. To solve this problem, this paper presents a Candidate Auto Selection algorithm (CAS) based on mutual information and breakpoint detection to limit the search space in order to accelerate the learning process. The proposed algorithm automatically restricts the neighbors of each node to a small set of candidates before structure learning. Then based on CAS algorithm, we propose a globally optimal greedy search method (CAS+G), which focuses on finding the high-scoring network structure, and a local learning method (CAS+L), which focuses on faster learning the structure with small loss of quality. Results show that the proposed CAS algorithm can effectively identify the neighbor nodes of each node. In the experiments, the CAS+G method outperforms the state-of-the-art method on simulation data for inferring GRNs, and the CAS+L method is significantly faster than the state-of-the-art method with little loss of accuracy. Hence, the CAS based algorithms are more suitable for GRN inference.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reconstructing gene regulatory network based on candidate auto selection method\",\"authors\":\"L. Xing, Maozu Guo, Xiaoyan Liu, Chunyu Wang, Lei Wang, Yin Zhang\",\"doi\":\"10.1109/BIBM.2016.7822524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reconstruction of gene regulatory network (GRN) is a great challenge in systems biology and bioinformatics, and methods based on Bayesian network (BN) draw most of attention because of its inherent probability characteristics. As NP-hard problems, most of the BN methods often adopt the heuristic search, but they are time-consuming for biological networks with a large number of nodes. To solve this problem, this paper presents a Candidate Auto Selection algorithm (CAS) based on mutual information and breakpoint detection to limit the search space in order to accelerate the learning process. The proposed algorithm automatically restricts the neighbors of each node to a small set of candidates before structure learning. Then based on CAS algorithm, we propose a globally optimal greedy search method (CAS+G), which focuses on finding the high-scoring network structure, and a local learning method (CAS+L), which focuses on faster learning the structure with small loss of quality. Results show that the proposed CAS algorithm can effectively identify the neighbor nodes of each node. In the experiments, the CAS+G method outperforms the state-of-the-art method on simulation data for inferring GRNs, and the CAS+L method is significantly faster than the state-of-the-art method with little loss of accuracy. Hence, the CAS based algorithms are more suitable for GRN inference.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基因调控网络(GRN)的重构是系统生物学和生物信息学领域的一个重大挑战,而基于贝叶斯网络(BN)的方法因其固有的概率特性而备受关注。作为NP-hard问题,大多数BN方法通常采用启发式搜索,但对于具有大量节点的生物网络,这种方法耗时较长。为了解决这一问题,本文提出了一种基于互信息和断点检测的候选自动选择算法(CAS),以限制搜索空间,从而加快学习过程。该算法在进行结构学习之前,自动将每个节点的邻居限制在一个小的候选集合中。然后在CAS算法的基础上,提出了全局最优贪心搜索法(CAS+G)和局部学习法(CAS+L),前者侧重于寻找高分网络结构,后者侧重于以较小的质量损失更快地学习结构。结果表明,所提出的CAS算法可以有效地识别每个节点的邻居节点。在实验中,CAS+G方法在模拟数据上优于最先进的方法来推断grn, CAS+L方法明显快于最先进的方法,而且精度损失很小。因此,基于CAS的算法更适合于GRN推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstructing gene regulatory network based on candidate auto selection method
The reconstruction of gene regulatory network (GRN) is a great challenge in systems biology and bioinformatics, and methods based on Bayesian network (BN) draw most of attention because of its inherent probability characteristics. As NP-hard problems, most of the BN methods often adopt the heuristic search, but they are time-consuming for biological networks with a large number of nodes. To solve this problem, this paper presents a Candidate Auto Selection algorithm (CAS) based on mutual information and breakpoint detection to limit the search space in order to accelerate the learning process. The proposed algorithm automatically restricts the neighbors of each node to a small set of candidates before structure learning. Then based on CAS algorithm, we propose a globally optimal greedy search method (CAS+G), which focuses on finding the high-scoring network structure, and a local learning method (CAS+L), which focuses on faster learning the structure with small loss of quality. Results show that the proposed CAS algorithm can effectively identify the neighbor nodes of each node. In the experiments, the CAS+G method outperforms the state-of-the-art method on simulation data for inferring GRNs, and the CAS+L method is significantly faster than the state-of-the-art method with little loss of accuracy. Hence, the CAS based algorithms are more suitable for GRN inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1