熔盐堆冻结阀性能的实验研究

I. K. Aji, Tokushima Tatsuya, M. Kinoshita, T. Okawa
{"title":"熔盐堆冻结阀性能的实验研究","authors":"I. K. Aji, Tokushima Tatsuya, M. Kinoshita, T. Okawa","doi":"10.1115/ICONE26-81679","DOIUrl":null,"url":null,"abstract":"Freeze valve technology is the main feature of safety system in the molten salt reactor. Freeze valve made from frozen salt located between reactor core and drain tank. The freeze valve will automatically melt and open on the accident condition, and respectively molten salt fuel will drain out from reactor core to the drain tanks. Melting time of frozen salt is important issues on this study, where draining process of the liquid fuel must be carried out immediately after the accident. Many factors affect to the opening time of freeze valve. On this experiment, describe a melting process of frozen salt which is affected by wall effect. HTS (high transfer salt) utilized as salt material, and a metal stick planted in the frozen HTS with a certain depth. The experimental process begins when the liquid HTS poured on the top of frozen HTS and ends when the metal stick detached from the frozen HTS. This experiments focus to analyze melting time of freeze valve which impacted by several parameters; material diameter which represent about material thickness in real situation, liquid temperature which represent about molten salt fuel, length of material which propose about the freeze valve thickness, and material difference which propose about thermal diffusivity effect. Results from the experiments will be utilized as a basic to developed mathematics and numerical analysis.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Experimental Study on Freeze Valve Performance in a Molten Salt Reactor\",\"authors\":\"I. K. Aji, Tokushima Tatsuya, M. Kinoshita, T. Okawa\",\"doi\":\"10.1115/ICONE26-81679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freeze valve technology is the main feature of safety system in the molten salt reactor. Freeze valve made from frozen salt located between reactor core and drain tank. The freeze valve will automatically melt and open on the accident condition, and respectively molten salt fuel will drain out from reactor core to the drain tanks. Melting time of frozen salt is important issues on this study, where draining process of the liquid fuel must be carried out immediately after the accident. Many factors affect to the opening time of freeze valve. On this experiment, describe a melting process of frozen salt which is affected by wall effect. HTS (high transfer salt) utilized as salt material, and a metal stick planted in the frozen HTS with a certain depth. The experimental process begins when the liquid HTS poured on the top of frozen HTS and ends when the metal stick detached from the frozen HTS. This experiments focus to analyze melting time of freeze valve which impacted by several parameters; material diameter which represent about material thickness in real situation, liquid temperature which represent about molten salt fuel, length of material which propose about the freeze valve thickness, and material difference which propose about thermal diffusivity effect. Results from the experiments will be utilized as a basic to developed mathematics and numerical analysis.\",\"PeriodicalId\":289940,\"journal\":{\"name\":\"Volume 9: Student Paper Competition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-81679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

冻结阀技术是熔盐堆安全系统的主要特点。冷冻阀由冷冻盐制成,位于反应堆堆芯和排水箱之间。在事故工况下,冷冻阀自动熔化并打开,熔盐燃料分别从堆芯排出至排液罐。冷冻盐的融化时间是本研究的重要问题,其中液体燃料的排放过程必须在事故发生后立即进行。影响冷冻阀开启时间的因素很多。在本实验中,描述了受壁效应影响的冷冻盐融化过程。采用高转移盐(HTS)作为盐料,在冷冻的高转移盐中植入一定深度的金属棒。实验过程从液态高温超导材料倒在冷冻高温超导材料的顶部开始,到金属棒与冷冻高温超导材料分离结束。本实验重点分析了几个参数对冷冻阀熔化时间的影响;材料直径代表实际情况下的材料厚度,液体温度代表实际情况下的熔盐燃料,材料长度代表实际情况下的冷冻阀厚度,材料差异代表实际情况下的热扩散效应。实验结果将作为发展数学和数值分析的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Experimental Study on Freeze Valve Performance in a Molten Salt Reactor
Freeze valve technology is the main feature of safety system in the molten salt reactor. Freeze valve made from frozen salt located between reactor core and drain tank. The freeze valve will automatically melt and open on the accident condition, and respectively molten salt fuel will drain out from reactor core to the drain tanks. Melting time of frozen salt is important issues on this study, where draining process of the liquid fuel must be carried out immediately after the accident. Many factors affect to the opening time of freeze valve. On this experiment, describe a melting process of frozen salt which is affected by wall effect. HTS (high transfer salt) utilized as salt material, and a metal stick planted in the frozen HTS with a certain depth. The experimental process begins when the liquid HTS poured on the top of frozen HTS and ends when the metal stick detached from the frozen HTS. This experiments focus to analyze melting time of freeze valve which impacted by several parameters; material diameter which represent about material thickness in real situation, liquid temperature which represent about molten salt fuel, length of material which propose about the freeze valve thickness, and material difference which propose about thermal diffusivity effect. Results from the experiments will be utilized as a basic to developed mathematics and numerical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer and Fluid Flow Characteristics of One Side Heated Vertical Rectangular Channel Applied As Vessel Cooling System of VHTR Hydraulic Characteristics Research on SG Under Tube Plugging Operations Using FLUENT Study on Flow Structure in a Supersonic Steam Injector Electrochemical Measurement of Radio-Activated Metal Under High Temperature Condition Simulation Research on Thermal-Hydraulic Performance of a Natural Circulation Integrated Pressurized Water Reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1