不同永磁励磁定子拓扑结构的分区定子电机的比较

Z. Zhu, H. Hua, D. Wu, J. T. Shi, Z. Wu
{"title":"不同永磁励磁定子拓扑结构的分区定子电机的比较","authors":"Z. Zhu, H. Hua, D. Wu, J. T. Shi, Z. Wu","doi":"10.1109/EVER.2015.7112950","DOIUrl":null,"url":null,"abstract":"The partitioned stator (PS) machine adopts two stators to allocate coils and permanent magnets (PMs) separately, which can increase the space for PMs and coils to boost the electromagnetic torque and to improve the thermal condition of PMs which are on the stator. In this paper, the PS switched flux PM machine and PS flux reversal PM machine are proved to inherently share the same operating principle and the same machine topology but with interior PM (IPM) and surface-mounted PM (SPM) stators, respectively. Based on this concept, four PS machines with different PM excitation stator topologies are introduced and compared in terms of back-EMF, cogging torque, electromagnetic torque, torque per PM volume and flux-weakening capability. The results show that the spoke-IPM inner stator exhibits the maximum back-EMF and hence the largest average torque, while the IPM inner stator has the best flux-weakening capability and the V-shaped IPM (VIPM) produces the highest torque per PM volume.","PeriodicalId":169529,"journal":{"name":"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparison of partitioned stator machines with different PM excitation stator topologies\",\"authors\":\"Z. Zhu, H. Hua, D. Wu, J. T. Shi, Z. Wu\",\"doi\":\"10.1109/EVER.2015.7112950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The partitioned stator (PS) machine adopts two stators to allocate coils and permanent magnets (PMs) separately, which can increase the space for PMs and coils to boost the electromagnetic torque and to improve the thermal condition of PMs which are on the stator. In this paper, the PS switched flux PM machine and PS flux reversal PM machine are proved to inherently share the same operating principle and the same machine topology but with interior PM (IPM) and surface-mounted PM (SPM) stators, respectively. Based on this concept, four PS machines with different PM excitation stator topologies are introduced and compared in terms of back-EMF, cogging torque, electromagnetic torque, torque per PM volume and flux-weakening capability. The results show that the spoke-IPM inner stator exhibits the maximum back-EMF and hence the largest average torque, while the IPM inner stator has the best flux-weakening capability and the V-shaped IPM (VIPM) produces the highest torque per PM volume.\",\"PeriodicalId\":169529,\"journal\":{\"name\":\"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EVER.2015.7112950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2015.7112950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

分块定子电机采用两个定子分别配置线圈和永磁体,增加了电机和永磁体的空间,提高了电磁转矩,改善了定子上电机的热状态。本文证明了PS开关磁通永磁电机和PS磁通反转永磁电机本质上具有相同的工作原理和机器拓扑结构,但分别采用内嵌式永磁定子(IPM)和表面贴装式永磁定子(SPM)。在此基础上,介绍了4种不同永磁励磁定子拓扑结构的永磁电机,并对其反电动势、齿槽转矩、电磁转矩、每电机体积转矩和消磁能力进行了比较。结果表明,辐条式IPM内定子的反电动势最大,平均转矩最大,而IPM内定子的消磁能力最好,v形IPM (VIPM)的每PM体积转矩最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of partitioned stator machines with different PM excitation stator topologies
The partitioned stator (PS) machine adopts two stators to allocate coils and permanent magnets (PMs) separately, which can increase the space for PMs and coils to boost the electromagnetic torque and to improve the thermal condition of PMs which are on the stator. In this paper, the PS switched flux PM machine and PS flux reversal PM machine are proved to inherently share the same operating principle and the same machine topology but with interior PM (IPM) and surface-mounted PM (SPM) stators, respectively. Based on this concept, four PS machines with different PM excitation stator topologies are introduced and compared in terms of back-EMF, cogging torque, electromagnetic torque, torque per PM volume and flux-weakening capability. The results show that the spoke-IPM inner stator exhibits the maximum back-EMF and hence the largest average torque, while the IPM inner stator has the best flux-weakening capability and the V-shaped IPM (VIPM) produces the highest torque per PM volume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Silicon carbide power electronics for electric vehicles Condition monitoring of BLDC motor drive systems by Hilbert Huang Transform Switched Reluctance Machine Drives for electrical vehicle propulsion - optimal control with regard to the losses in machine and converter A novel double-rotor switched reluctance motor with auxiliary excitation windings Properties and control of variable speed doubly fed induction generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1