基于卷积神经网络的无人机图像与DSM相结合土地覆盖分类

Bui Quang Thanh, Vu Van Long, Nguyen Xuan Linh, Phan Van Manh
{"title":"基于卷积神经网络的无人机图像与DSM相结合土地覆盖分类","authors":"Bui Quang Thanh, Vu Van Long, Nguyen Xuan Linh, Phan Van Manh","doi":"10.25073/2588-1094/vnuees.4812","DOIUrl":null,"url":null,"abstract":"Machine learning applies predominantly to the classification of the satellite images, aerial photo, unmanned aerial vehicle (UAV) data, point clouds with considerable achievements. However, the dynamic and complex structures of land surface prevent accurate land cover segregation through built-in models, and there is a crucial need to investigate novel ones. This study integrates Catboost into a Convolutional neural network for land cover classification from UAV images, with a case study in Hanoi. The combination of these images and Digital surface model to form the input datasets. The results show that the overall accuracy reaches 91,5%, which is relatively higher than other comparing methods. The proposal model can be used as an alternative method for land cover classification. \n ","PeriodicalId":247618,"journal":{"name":"VNU Journal of Science: Earth and Environmental Sciences","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combination of UAV Images and DSM for Land Cover Classification using Convolutional Neural Network\",\"authors\":\"Bui Quang Thanh, Vu Van Long, Nguyen Xuan Linh, Phan Van Manh\",\"doi\":\"10.25073/2588-1094/vnuees.4812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning applies predominantly to the classification of the satellite images, aerial photo, unmanned aerial vehicle (UAV) data, point clouds with considerable achievements. However, the dynamic and complex structures of land surface prevent accurate land cover segregation through built-in models, and there is a crucial need to investigate novel ones. This study integrates Catboost into a Convolutional neural network for land cover classification from UAV images, with a case study in Hanoi. The combination of these images and Digital surface model to form the input datasets. The results show that the overall accuracy reaches 91,5%, which is relatively higher than other comparing methods. The proposal model can be used as an alternative method for land cover classification. \\n \",\"PeriodicalId\":247618,\"journal\":{\"name\":\"VNU Journal of Science: Earth and Environmental Sciences\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Earth and Environmental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1094/vnuees.4812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Earth and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1094/vnuees.4812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习主要应用于卫星图像、航空照片、无人机数据、点云的分类,并取得了相当大的成就。然而,由于地表结构的动态性和复杂性,无法通过内置模型准确地进行土地覆盖分离,因此迫切需要研究新的模型。本研究将Catboost集成到卷积神经网络中,用于从无人机图像中进行土地覆盖分类,并以河内为例进行了研究。将这些图像与数字曲面模型相结合,形成输入数据集。结果表明,该方法的总体精度达到91.5%,相对于其他比较方法有一定的提高。该建议模型可作为土地覆盖分类的一种替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combination of UAV Images and DSM for Land Cover Classification using Convolutional Neural Network
Machine learning applies predominantly to the classification of the satellite images, aerial photo, unmanned aerial vehicle (UAV) data, point clouds with considerable achievements. However, the dynamic and complex structures of land surface prevent accurate land cover segregation through built-in models, and there is a crucial need to investigate novel ones. This study integrates Catboost into a Convolutional neural network for land cover classification from UAV images, with a case study in Hanoi. The combination of these images and Digital surface model to form the input datasets. The results show that the overall accuracy reaches 91,5%, which is relatively higher than other comparing methods. The proposal model can be used as an alternative method for land cover classification.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flood Mapping and Impact Assessment in Agricultural Land in Hoa Vang, Da Nang Using Remote Sensing and Google Earth Engine Characteristics of PM2.5 in Long Binh Industry Park, Bien Hoa City, Vietnam: Mass Concentrations, Chemical Composition, Source Apportionment, and Health Risk Assessment Removal of DB71 Dye from Water Using Shrimp-shell Chitosan Effects of Silica-Biochar, Bentonite and Diatomite Ratios on Properties of Controlled Release Fertilizer Studying effects of emissions from thermal power plants on ambient air quality in Cam Pha city
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1