通过数据驱动的分层强化学习诱导的教学政策解释改善学生与系统的互动

Guojing Zhou, Xi Yang, Hamoon Azizsoltani, T. Barnes, Min Chi
{"title":"通过数据驱动的分层强化学习诱导的教学政策解释改善学生与系统的互动","authors":"Guojing Zhou, Xi Yang, Hamoon Azizsoltani, T. Barnes, Min Chi","doi":"10.1145/3340631.3394848","DOIUrl":null,"url":null,"abstract":"Motivated by the recent advances of reinforcement learning and the traditional grounded Self Determination Theory (SDT), we explored the impact of hierarchical reinforcement learning (HRL) induced pedagogical policies and data-driven explanations of the HRL-induced policies on student experience in an Intelligent Tutoring System (ITS). We explored their impacts first independently and then jointly. Overall our results showed that 1) the HRL induced policies could significantly improve students' learning performance, and 2) explaining the tutor's decisions to students through data-driven explanations could improve the student-system interaction in terms of students' engagement and autonomy.","PeriodicalId":417607,"journal":{"name":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","volume":"55 48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improving Student-System Interaction Through Data-driven Explanations of Hierarchical Reinforcement Learning Induced Pedagogical Policies\",\"authors\":\"Guojing Zhou, Xi Yang, Hamoon Azizsoltani, T. Barnes, Min Chi\",\"doi\":\"10.1145/3340631.3394848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the recent advances of reinforcement learning and the traditional grounded Self Determination Theory (SDT), we explored the impact of hierarchical reinforcement learning (HRL) induced pedagogical policies and data-driven explanations of the HRL-induced policies on student experience in an Intelligent Tutoring System (ITS). We explored their impacts first independently and then jointly. Overall our results showed that 1) the HRL induced policies could significantly improve students' learning performance, and 2) explaining the tutor's decisions to students through data-driven explanations could improve the student-system interaction in terms of students' engagement and autonomy.\",\"PeriodicalId\":417607,\"journal\":{\"name\":\"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"55 48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340631.3394848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340631.3394848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在强化学习和传统基于自我决定理论(SDT)的最新进展的推动下,我们探讨了分层强化学习(HRL)诱导的教学政策以及HRL诱导政策的数据驱动解释对智能辅导系统(ITS)中学生体验的影响。我们先独立研究它们的影响,然后联合研究。总体而言,我们的研究结果表明:(1)HRL诱导的政策可以显著提高学生的学习绩效;(2)通过数据驱动的解释向学生解释导师的决策,可以在学生的参与度和自主性方面改善学生与系统的互动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Student-System Interaction Through Data-driven Explanations of Hierarchical Reinforcement Learning Induced Pedagogical Policies
Motivated by the recent advances of reinforcement learning and the traditional grounded Self Determination Theory (SDT), we explored the impact of hierarchical reinforcement learning (HRL) induced pedagogical policies and data-driven explanations of the HRL-induced policies on student experience in an Intelligent Tutoring System (ITS). We explored their impacts first independently and then jointly. Overall our results showed that 1) the HRL induced policies could significantly improve students' learning performance, and 2) explaining the tutor's decisions to students through data-driven explanations could improve the student-system interaction in terms of students' engagement and autonomy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Pen Features Predict Task Difficulty and User Performance of Cognitive Tests Workshop on Explainable User Models and Personalized Systems (ExUM 2020) The Eyes Are the Windows to the Mind: Implications for AI-Driven Personalized Interaction Inside Out: Exploring the Emotional Side of Search Engines in the Classroom Modeling Tourists' Personality in Recommender Systems: How Does Personality Influence Preferences for Tourist Attractions?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1