结合PSO和k-means方法解决单倍型重构问题

S. Sharifian-R, Ardeshir Baharian, E. Asgarian, A. Rasooli
{"title":"结合PSO和k-means方法解决单倍型重构问题","authors":"S. Sharifian-R, Ardeshir Baharian, E. Asgarian, A. Rasooli","doi":"10.1109/IIT.2009.5413778","DOIUrl":null,"url":null,"abstract":"Disease association study is of great importance among various fields of study in bioinformatics. Computational methods happen to be advantageous specifically when experimental approaches fail to obtain accurate results. Haplotypes are believed to be the most responsible biological data for genetic diseases. In this paper, the problem of reconstructing haplotypes from error-containing SNP fragments is discussed. For this purpose, two new methods have been proposed by a combination of k-means clustering and particle swarm optimization algorithm. The methods and their implementation results on real biological and simulation datasets are represented which shows that they outperform the methods used alone.","PeriodicalId":239829,"journal":{"name":"2009 International Conference on Innovations in Information Technology (IIT)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A combination of PSO and k-means methods to solve haplotype reconstruction problem\",\"authors\":\"S. Sharifian-R, Ardeshir Baharian, E. Asgarian, A. Rasooli\",\"doi\":\"10.1109/IIT.2009.5413778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disease association study is of great importance among various fields of study in bioinformatics. Computational methods happen to be advantageous specifically when experimental approaches fail to obtain accurate results. Haplotypes are believed to be the most responsible biological data for genetic diseases. In this paper, the problem of reconstructing haplotypes from error-containing SNP fragments is discussed. For this purpose, two new methods have been proposed by a combination of k-means clustering and particle swarm optimization algorithm. The methods and their implementation results on real biological and simulation datasets are represented which shows that they outperform the methods used alone.\",\"PeriodicalId\":239829,\"journal\":{\"name\":\"2009 International Conference on Innovations in Information Technology (IIT)\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Innovations in Information Technology (IIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIT.2009.5413778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Innovations in Information Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2009.5413778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

疾病关联研究是生物信息学研究的重要领域之一。当实验方法不能得到准确的结果时,计算方法恰好是有利的。单倍型被认为是遗传疾病最可靠的生物学数据。本文讨论了含错误SNP片段重建单倍型的问题。为此,提出了两种结合k-means聚类和粒子群优化算法的新方法。给出了该方法及其在真实生物和仿真数据集上的实现结果,表明该方法优于单独使用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A combination of PSO and k-means methods to solve haplotype reconstruction problem
Disease association study is of great importance among various fields of study in bioinformatics. Computational methods happen to be advantageous specifically when experimental approaches fail to obtain accurate results. Haplotypes are believed to be the most responsible biological data for genetic diseases. In this paper, the problem of reconstructing haplotypes from error-containing SNP fragments is discussed. For this purpose, two new methods have been proposed by a combination of k-means clustering and particle swarm optimization algorithm. The methods and their implementation results on real biological and simulation datasets are represented which shows that they outperform the methods used alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A software development tool for improving Quality of Service in Distributed Database Systems XQPoint: A queriable homomorphic XML compressor Design and simulation of a speech processor for cochlear implant based on Arabic language On popularity quality: Growth and decay phases of publication popularities Impact of applying realistic mobility models on the performance analysis of Internet gateway discovery approaches for Mobile Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1