基于各向异性缩放和剪切不变几何相干的图像检索

Xiaomeng Wu, K. Kashino
{"title":"基于各向异性缩放和剪切不变几何相干的图像检索","authors":"Xiaomeng Wu, K. Kashino","doi":"10.1109/ICPR.2014.677","DOIUrl":null,"url":null,"abstract":"Imposing a spatial coherence constraint on image matching is becoming a necessity for local feature based object retrieval. We tackle the affine invariance problem of the prior spatial coherence model and propose a novel approach for geometrically stable image retrieval. Compared with related studies focusing simply on translation, rotation, and isotropic scaling, our approach can deal with more significant transformations including anisotropic scaling and shearing. Our contribution consists of revisiting the first-order affine adaptation approach and extending its application to represent the geometric coherence of a second-order local feature structure. We comprehensively evaluated our approach using Flickr Logos 32, Holiday, and Oxford Buildings benchmarks. Extensive experimentation and comparisons with state-of-the-art spatial coherence models demonstrate the superiority of our approach in image retrieval tasks.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Image Retrieval Based on Anisotropic Scaling and Shearing Invariant Geometric Coherence\",\"authors\":\"Xiaomeng Wu, K. Kashino\",\"doi\":\"10.1109/ICPR.2014.677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imposing a spatial coherence constraint on image matching is becoming a necessity for local feature based object retrieval. We tackle the affine invariance problem of the prior spatial coherence model and propose a novel approach for geometrically stable image retrieval. Compared with related studies focusing simply on translation, rotation, and isotropic scaling, our approach can deal with more significant transformations including anisotropic scaling and shearing. Our contribution consists of revisiting the first-order affine adaptation approach and extending its application to represent the geometric coherence of a second-order local feature structure. We comprehensively evaluated our approach using Flickr Logos 32, Holiday, and Oxford Buildings benchmarks. Extensive experimentation and comparisons with state-of-the-art spatial coherence models demonstrate the superiority of our approach in image retrieval tasks.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在图像匹配中施加空间相干性约束是基于局部特征的目标检索的必要条件。我们解决了先验空间相干模型的仿射不变性问题,提出了一种几何稳定图像检索的新方法。与单纯关注平移、旋转和各向同性缩放的相关研究相比,我们的方法可以处理更重要的转换,包括各向异性缩放和剪切。我们的贡献包括重新审视一阶仿射适应方法,并将其应用扩展到表示二阶局部特征结构的几何相干性。我们使用Flickr Logos 32、Holiday和Oxford Buildings基准对我们的方法进行了全面评估。广泛的实验和与最先进的空间相干模型的比较证明了我们的方法在图像检索任务中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Retrieval Based on Anisotropic Scaling and Shearing Invariant Geometric Coherence
Imposing a spatial coherence constraint on image matching is becoming a necessity for local feature based object retrieval. We tackle the affine invariance problem of the prior spatial coherence model and propose a novel approach for geometrically stable image retrieval. Compared with related studies focusing simply on translation, rotation, and isotropic scaling, our approach can deal with more significant transformations including anisotropic scaling and shearing. Our contribution consists of revisiting the first-order affine adaptation approach and extending its application to represent the geometric coherence of a second-order local feature structure. We comprehensively evaluated our approach using Flickr Logos 32, Holiday, and Oxford Buildings benchmarks. Extensive experimentation and comparisons with state-of-the-art spatial coherence models demonstrate the superiority of our approach in image retrieval tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Tracking via Deformable Structure Regression Learning Traffic Camera Anomaly Detection Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior Volume Reconstruction for MRI Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1