{"title":"CRISCE","authors":"Vuong Nguyen, Alessio Gambi, Jasim Ahmed, G. Fraser","doi":"10.1145/3510454.3528642","DOIUrl":null,"url":null,"abstract":"Cyber-Physical Systems are increasingly deployed to perform safety-critical tasks, such as autonomously driving a vehicle. Therefore, thoroughly testing them is paramount to avoid accidents and fatalities. Driving simulators allow developers to address this challenge by testing autonomous vehicles in many driving scenarios; nevertheless, systematically generating scenarios that effectively stress the software controlling the vehicles remains an open challenge. Recent work has shown that effective test cases can be derived from simulations of critical driving scenarios such as car crashes. Hence, generating those simulations is a stepping stone for thoroughly testing autonomous vehicles. Towards this end, we propose CRISCE (CRItical SketChEs), an approach that leverages image processing (e.g., contour analysis) to automatically generate simulations of critical driving scenarios from accident sketches. Preliminary results show that CRISCE is efficient and can generate accurate simulations; hence, it has the potential to support developers in effectively achieving high-quality autonomous vehicles.","PeriodicalId":326006,"journal":{"name":"Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CRISCE\",\"authors\":\"Vuong Nguyen, Alessio Gambi, Jasim Ahmed, G. Fraser\",\"doi\":\"10.1145/3510454.3528642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-Physical Systems are increasingly deployed to perform safety-critical tasks, such as autonomously driving a vehicle. Therefore, thoroughly testing them is paramount to avoid accidents and fatalities. Driving simulators allow developers to address this challenge by testing autonomous vehicles in many driving scenarios; nevertheless, systematically generating scenarios that effectively stress the software controlling the vehicles remains an open challenge. Recent work has shown that effective test cases can be derived from simulations of critical driving scenarios such as car crashes. Hence, generating those simulations is a stepping stone for thoroughly testing autonomous vehicles. Towards this end, we propose CRISCE (CRItical SketChEs), an approach that leverages image processing (e.g., contour analysis) to automatically generate simulations of critical driving scenarios from accident sketches. Preliminary results show that CRISCE is efficient and can generate accurate simulations; hence, it has the potential to support developers in effectively achieving high-quality autonomous vehicles.\",\"PeriodicalId\":326006,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510454.3528642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510454.3528642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISCE
Cyber-Physical Systems are increasingly deployed to perform safety-critical tasks, such as autonomously driving a vehicle. Therefore, thoroughly testing them is paramount to avoid accidents and fatalities. Driving simulators allow developers to address this challenge by testing autonomous vehicles in many driving scenarios; nevertheless, systematically generating scenarios that effectively stress the software controlling the vehicles remains an open challenge. Recent work has shown that effective test cases can be derived from simulations of critical driving scenarios such as car crashes. Hence, generating those simulations is a stepping stone for thoroughly testing autonomous vehicles. Towards this end, we propose CRISCE (CRItical SketChEs), an approach that leverages image processing (e.g., contour analysis) to automatically generate simulations of critical driving scenarios from accident sketches. Preliminary results show that CRISCE is efficient and can generate accurate simulations; hence, it has the potential to support developers in effectively achieving high-quality autonomous vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
M3triCity μ 2 Comprehensive comparisons of embedding approaches for cryptographic API completion: poster CIDER SEbox4DL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1