基于kubernetes的边缘云连续体中的大规模工作负载部署和配置协调

D. Hass, Josef Spillner
{"title":"基于kubernetes的边缘云连续体中的大规模工作负载部署和配置协调","authors":"D. Hass, Josef Spillner","doi":"10.1109/ISPDC55340.2022.00026","DOIUrl":null,"url":null,"abstract":"Continuum computing promises the abstraction of physical node location and node platform stack in order to create a seamless application deployment and execution across edges and cloud data centres. For industrial IoT applications, the demand to generate data insights in conjunction with an installed base of increasingly capable edge devices is calling for appropriate continuum computing interfaces. Derived from a case study in industrial water flow monitoring and based on the industry’s de-facto standard Kubernetes to deploy complex containerised workloads, we present an appropriate continuum deployment mechanism based on custom Kubernetes controllers and CI/CD, called Kontinuum Controller. Through synthetic experiments and a holistic cross-provider deployment, we investigate its scalability with emphasis on reconciling adjusted configuration per application and per node, a critical requirement by industrial customers. Our findings convey that Kubernetes by default would enter undesirable oscillation already for modestly sized deployments. Thus, we also discuss possible solutions.","PeriodicalId":389334,"journal":{"name":"2022 21st International Symposium on Parallel and Distributed Computing (ISPDC)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Workload Deployment and Configuration Reconciliation at Scale in Kubernetes-Based Edge-Cloud Continuums\",\"authors\":\"D. Hass, Josef Spillner\",\"doi\":\"10.1109/ISPDC55340.2022.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuum computing promises the abstraction of physical node location and node platform stack in order to create a seamless application deployment and execution across edges and cloud data centres. For industrial IoT applications, the demand to generate data insights in conjunction with an installed base of increasingly capable edge devices is calling for appropriate continuum computing interfaces. Derived from a case study in industrial water flow monitoring and based on the industry’s de-facto standard Kubernetes to deploy complex containerised workloads, we present an appropriate continuum deployment mechanism based on custom Kubernetes controllers and CI/CD, called Kontinuum Controller. Through synthetic experiments and a holistic cross-provider deployment, we investigate its scalability with emphasis on reconciling adjusted configuration per application and per node, a critical requirement by industrial customers. Our findings convey that Kubernetes by default would enter undesirable oscillation already for modestly sized deployments. Thus, we also discuss possible solutions.\",\"PeriodicalId\":389334,\"journal\":{\"name\":\"2022 21st International Symposium on Parallel and Distributed Computing (ISPDC)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st International Symposium on Parallel and Distributed Computing (ISPDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDC55340.2022.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium on Parallel and Distributed Computing (ISPDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC55340.2022.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

连续计算承诺抽象物理节点位置和节点平台堆栈,以便创建跨边缘和云数据中心的无缝应用程序部署和执行。对于工业物联网应用,生成数据洞察力的需求与日益强大的边缘设备的安装基础相结合,需要适当的连续计算接口。基于工业水流监测的案例研究,基于行业实际标准Kubernetes部署复杂的容器化工作负载,我们提出了一种基于自定义Kubernetes控制器和CI/CD的合适的连续部署机制,称为Kontinuum Controller。通过综合实验和整体跨提供商部署,我们研究了其可扩展性,重点是协调每个应用程序和每个节点的调整配置,这是工业客户的关键需求。我们的发现表明,对于中等规模的部署,Kubernetes在默认情况下已经进入了不受欢迎的振荡状态。因此,我们也讨论了可能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Workload Deployment and Configuration Reconciliation at Scale in Kubernetes-Based Edge-Cloud Continuums
Continuum computing promises the abstraction of physical node location and node platform stack in order to create a seamless application deployment and execution across edges and cloud data centres. For industrial IoT applications, the demand to generate data insights in conjunction with an installed base of increasingly capable edge devices is calling for appropriate continuum computing interfaces. Derived from a case study in industrial water flow monitoring and based on the industry’s de-facto standard Kubernetes to deploy complex containerised workloads, we present an appropriate continuum deployment mechanism based on custom Kubernetes controllers and CI/CD, called Kontinuum Controller. Through synthetic experiments and a holistic cross-provider deployment, we investigate its scalability with emphasis on reconciling adjusted configuration per application and per node, a critical requirement by industrial customers. Our findings convey that Kubernetes by default would enter undesirable oscillation already for modestly sized deployments. Thus, we also discuss possible solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating the Impact of Communication Schemes for Distributed Graph Processing Sponsors and Conference Support Performance Comparison of Speculative Taskloop and OpenMP-for-Loop Thread-Level Speculation on Hardware Transactional Memory [Full] Deep Heuristic for Broadcasting in Arbitrary Networks Analysis and Mitigation of Soft-Errors on High Performance Embedded GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1