基于克隆选择原理和粒子群智能的混合优化算法

Qiaoling Wang, Changhong Wang, X. Gao
{"title":"基于克隆选择原理和粒子群智能的混合优化算法","authors":"Qiaoling Wang, Changhong Wang, X. Gao","doi":"10.1109/ISDA.2006.253744","DOIUrl":null,"url":null,"abstract":"This paper first discusses the background knowledge of the clonal selection algorithm and particle swarm method. The clonal selection algorithm is imitated by the basic principle of the adaptive immune response to virus stimulus. The particle swarm optimization is motivated by the social behaviors of swarms. Inspired by these two optimization methods, we propose a hybrid optimization algorithm in this paper. The steps of this hybrid optimization algorithm are described in details, and its performance is evaluated hybrid unidimensional function optimization and three multidimensional functions optimization problems. It is also compared with both the clonal selection algorithm and particle swarm method based on numerical simulations","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A Hybrid Optimization Algorithm based on Clonal Selection Principle and Particle Swarm Intelligence\",\"authors\":\"Qiaoling Wang, Changhong Wang, X. Gao\",\"doi\":\"10.1109/ISDA.2006.253744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper first discusses the background knowledge of the clonal selection algorithm and particle swarm method. The clonal selection algorithm is imitated by the basic principle of the adaptive immune response to virus stimulus. The particle swarm optimization is motivated by the social behaviors of swarms. Inspired by these two optimization methods, we propose a hybrid optimization algorithm in this paper. The steps of this hybrid optimization algorithm are described in details, and its performance is evaluated hybrid unidimensional function optimization and three multidimensional functions optimization problems. It is also compared with both the clonal selection algorithm and particle swarm method based on numerical simulations\",\"PeriodicalId\":116729,\"journal\":{\"name\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2006.253744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.253744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文首先讨论了克隆选择算法和粒子群算法的背景知识。克隆选择算法模仿了病毒刺激下适应性免疫反应的基本原理。粒子群优化是由群体的社会行为驱动的。受这两种优化方法的启发,本文提出了一种混合优化算法。详细描述了该混合优化算法的具体步骤,并对其性能进行了评价,给出了混合一维函数优化和三维函数优化问题。在数值模拟的基础上,对克隆选择算法和粒子群算法进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Optimization Algorithm based on Clonal Selection Principle and Particle Swarm Intelligence
This paper first discusses the background knowledge of the clonal selection algorithm and particle swarm method. The clonal selection algorithm is imitated by the basic principle of the adaptive immune response to virus stimulus. The particle swarm optimization is motivated by the social behaviors of swarms. Inspired by these two optimization methods, we propose a hybrid optimization algorithm in this paper. The steps of this hybrid optimization algorithm are described in details, and its performance is evaluated hybrid unidimensional function optimization and three multidimensional functions optimization problems. It is also compared with both the clonal selection algorithm and particle swarm method based on numerical simulations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Lagrange Nonlinear Programming Neural Networks for Inequality Constraints Enhancement Filter for Computer-Aided Detection of Pulmonary Nodules on Thoracic CT images A View-Based Toeplitz-Matrix-Supported System for Word Recognition without Segmentation A Novel Spatial Clustering with Obstacles Constraints Based on Genetic Algorithms and K-Medoids An Intelligent Runoff Forecasting Method Based on Fuzzy sets, Neural network and Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1