用于动作分割的深度可分时态卷积网络

Basavaraj Hampiholi, Christian Jarvers, W. Mader, H. Neumann
{"title":"用于动作分割的深度可分时态卷积网络","authors":"Basavaraj Hampiholi, Christian Jarvers, W. Mader, H. Neumann","doi":"10.1109/3DV50981.2020.00073","DOIUrl":null,"url":null,"abstract":"Fine-grained temporal action segmentation in long, untrimmed RGB videos is a key topic in visual human-machine interaction. Recent temporal convolution based approaches either use encoder-decoder(ED) architecture or dilations with doubling factor in consecutive convolution layers to segment actions in videos. However ED networks operate on low temporal resolution and the dilations in successive layers cause gridding artifacts problem. We propose depthwise separable temporal convolution network (DS-TCN) that operates on full temporal resolution and with reduced gridding effects. The basic component of DS-TCN is residual depthwise dilated block (RDDB). We explore the trade-off between large kernels and small dilation rates using RDDB. We show that our DS-TCN is capable of capturing long-term dependencies as well as local temporal cues efficiently. Our evaluation on three benchmark datasets, GTEA, 50Salads, and Breakfast demonstrates that DS-TCN outperforms the existing ED-TCN and dilation based TCN baselines even with comparatively fewer parameters.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Depthwise Separable Temporal Convolutional Network for Action Segmentation\",\"authors\":\"Basavaraj Hampiholi, Christian Jarvers, W. Mader, H. Neumann\",\"doi\":\"10.1109/3DV50981.2020.00073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine-grained temporal action segmentation in long, untrimmed RGB videos is a key topic in visual human-machine interaction. Recent temporal convolution based approaches either use encoder-decoder(ED) architecture or dilations with doubling factor in consecutive convolution layers to segment actions in videos. However ED networks operate on low temporal resolution and the dilations in successive layers cause gridding artifacts problem. We propose depthwise separable temporal convolution network (DS-TCN) that operates on full temporal resolution and with reduced gridding effects. The basic component of DS-TCN is residual depthwise dilated block (RDDB). We explore the trade-off between large kernels and small dilation rates using RDDB. We show that our DS-TCN is capable of capturing long-term dependencies as well as local temporal cues efficiently. Our evaluation on three benchmark datasets, GTEA, 50Salads, and Breakfast demonstrates that DS-TCN outperforms the existing ED-TCN and dilation based TCN baselines even with comparatively fewer parameters.\",\"PeriodicalId\":293399,\"journal\":{\"name\":\"2020 International Conference on 3D Vision (3DV)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV50981.2020.00073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在长、未修剪的RGB视频中进行细粒度时间动作分割是视觉人机交互中的一个关键问题。最近基于时间卷积的方法要么使用编码器-解码器(ED)架构,要么在连续卷积层中使用倍因子扩展来分割视频中的动作。然而,在低时间分辨率下,连续层的膨胀会导致网格伪影问题。我们提出了深度可分离的时间卷积网络(DS-TCN),它在全时间分辨率和减少网格效应下工作。DS-TCN的基本成分是残余深度扩张块(RDDB)。我们使用RDDB探索大内核和小膨胀率之间的权衡。我们表明,我们的DS-TCN能够有效地捕获长期依赖关系以及局部时间线索。我们对GTEA、50salad和Breakfast三个基准数据集的评估表明,即使参数相对较少,DS-TCN也优于现有的ED-TCN和基于扩张的TCN基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Depthwise Separable Temporal Convolutional Network for Action Segmentation
Fine-grained temporal action segmentation in long, untrimmed RGB videos is a key topic in visual human-machine interaction. Recent temporal convolution based approaches either use encoder-decoder(ED) architecture or dilations with doubling factor in consecutive convolution layers to segment actions in videos. However ED networks operate on low temporal resolution and the dilations in successive layers cause gridding artifacts problem. We propose depthwise separable temporal convolution network (DS-TCN) that operates on full temporal resolution and with reduced gridding effects. The basic component of DS-TCN is residual depthwise dilated block (RDDB). We explore the trade-off between large kernels and small dilation rates using RDDB. We show that our DS-TCN is capable of capturing long-term dependencies as well as local temporal cues efficiently. Our evaluation on three benchmark datasets, GTEA, 50Salads, and Breakfast demonstrates that DS-TCN outperforms the existing ED-TCN and dilation based TCN baselines even with comparatively fewer parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen-space Regularization on Differentiable Rasterization Motion Annotation Programs: A Scalable Approach to Annotating Kinematic Articulations in Large 3D Shape Collections Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization KeystoneDepth: History in 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1