从RGB和RGB- d视频序列中有效提取关键帧

Julien Valognes, Maria A. Amer, Niloufar Salehi Dastjerdi
{"title":"从RGB和RGB- d视频序列中有效提取关键帧","authors":"Julien Valognes, Maria A. Amer, Niloufar Salehi Dastjerdi","doi":"10.1109/IPTA.2017.8310120","DOIUrl":null,"url":null,"abstract":"The rapid increase in digital video content demands effective summarization techniques, specially with the creation of RGBD videos. Keyframe extraction significantly reduces the amount of raw data in a video sequence. In this paper, we present a two-stage (histogram and filtering) keyframe extraction algorithm applicable on RGB and RGBD videos. In the first stage, RGB and depth histogram similarities of consecutive frames are computed and candidate keyframes are extracted. In the second stage, we filter neighboring candidate keyframes based on the MAD of their Euclidean distance and their MSE. Subjective and objective experimental results show our algorithm effectively extracts keyframes from both RGB and RGBD videos.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effective keyframe extraction from RGB and RGB-D video sequences\",\"authors\":\"Julien Valognes, Maria A. Amer, Niloufar Salehi Dastjerdi\",\"doi\":\"10.1109/IPTA.2017.8310120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid increase in digital video content demands effective summarization techniques, specially with the creation of RGBD videos. Keyframe extraction significantly reduces the amount of raw data in a video sequence. In this paper, we present a two-stage (histogram and filtering) keyframe extraction algorithm applicable on RGB and RGBD videos. In the first stage, RGB and depth histogram similarities of consecutive frames are computed and candidate keyframes are extracted. In the second stage, we filter neighboring candidate keyframes based on the MAD of their Euclidean distance and their MSE. Subjective and objective experimental results show our algorithm effectively extracts keyframes from both RGB and RGBD videos.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

数字视频内容的快速增长需要有效的摘要技术,特别是RGBD视频的创建。关键帧提取显著减少了视频序列中的原始数据量。本文提出了一种适用于RGB和RGBD视频的两阶段(直方图和滤波)关键帧提取算法。第一阶段,计算连续帧的RGB和深度直方图相似度,提取候选关键帧;在第二阶段,我们基于候选关键帧的欧几里得距离和MSE的MAD来过滤相邻候选关键帧。主观和客观实验结果表明,该算法能有效地从RGB和RGBD视频中提取关键帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective keyframe extraction from RGB and RGB-D video sequences
The rapid increase in digital video content demands effective summarization techniques, specially with the creation of RGBD videos. Keyframe extraction significantly reduces the amount of raw data in a video sequence. In this paper, we present a two-stage (histogram and filtering) keyframe extraction algorithm applicable on RGB and RGBD videos. In the first stage, RGB and depth histogram similarities of consecutive frames are computed and candidate keyframes are extracted. In the second stage, we filter neighboring candidate keyframes based on the MAD of their Euclidean distance and their MSE. Subjective and objective experimental results show our algorithm effectively extracts keyframes from both RGB and RGBD videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated quantification of retinal vessel morphometry in the UK biobank cohort Deep learning for automatic sale receipt understanding Illumination-robust multispectral demosaicing Completed local structure patterns on three orthogonal planes for dynamic texture recognition Single object tracking using offline trained deep regression networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1