【常规论文】身体动力上肢假肢力学测试方法综述

Renato Mio, Midori Sanchez, Q. Valverde
{"title":"【常规论文】身体动力上肢假肢力学测试方法综述","authors":"Renato Mio, Midori Sanchez, Q. Valverde","doi":"10.1109/BIBE.2018.00040","DOIUrl":null,"url":null,"abstract":"New manufacturing and rapid prototyping technologies have fueled the creation of affordable and easy to replicate upper-limb prostheses. In this matter, many types and designs of 3D-printed upper-limb prostheses have been created over the last years. However, there is no consensus in the testing methodology for these devices regarding their mechanical capabilities and the comparisons authors can make are limited to their own metrics, which could be considered as a subjective approach. In order to tackle this issue, this work revises the existing methods for testing both the mechanical resistance and the mechanical performance or efficiency of upper-limb prostheses; specifically, the ones that are relevant for 3D-printed body-powered prostheses. Then, the adaptations needed to apply these methods to 3D-printed prostheses are discussed. Finally, recommendations are given for prosthetists and researchers in order to execute reliable tests that can be compared across different hand prosthesis designs.","PeriodicalId":127507,"journal":{"name":"2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"[Regular Paper] Mechanical Testing Methods for Body-Powered Upper-Limb Prostheses: A Review\",\"authors\":\"Renato Mio, Midori Sanchez, Q. Valverde\",\"doi\":\"10.1109/BIBE.2018.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New manufacturing and rapid prototyping technologies have fueled the creation of affordable and easy to replicate upper-limb prostheses. In this matter, many types and designs of 3D-printed upper-limb prostheses have been created over the last years. However, there is no consensus in the testing methodology for these devices regarding their mechanical capabilities and the comparisons authors can make are limited to their own metrics, which could be considered as a subjective approach. In order to tackle this issue, this work revises the existing methods for testing both the mechanical resistance and the mechanical performance or efficiency of upper-limb prostheses; specifically, the ones that are relevant for 3D-printed body-powered prostheses. Then, the adaptations needed to apply these methods to 3D-printed prostheses are discussed. Finally, recommendations are given for prosthetists and researchers in order to execute reliable tests that can be compared across different hand prosthesis designs.\",\"PeriodicalId\":127507,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2018.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2018.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

新的制造和快速原型技术推动了经济实惠且易于复制的上肢假肢的创造。在这个问题上,许多类型和设计的3d打印上肢假肢在过去的几年里已经被创造出来。然而,关于这些设备的机械性能的测试方法没有达成共识,作者可以进行的比较仅限于他们自己的指标,这可能被认为是一种主观的方法。为了解决这一问题,本工作对现有的上肢假肢机械阻力和机械性能或效率测试方法进行了修订;特别是那些与3d打印身体动力假肢相关的。然后,讨论了将这些方法应用于3d打印假肢所需的适应性。最后,为假肢专家和研究人员提供建议,以便在不同的假肢设计中进行可靠的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Regular Paper] Mechanical Testing Methods for Body-Powered Upper-Limb Prostheses: A Review
New manufacturing and rapid prototyping technologies have fueled the creation of affordable and easy to replicate upper-limb prostheses. In this matter, many types and designs of 3D-printed upper-limb prostheses have been created over the last years. However, there is no consensus in the testing methodology for these devices regarding their mechanical capabilities and the comparisons authors can make are limited to their own metrics, which could be considered as a subjective approach. In order to tackle this issue, this work revises the existing methods for testing both the mechanical resistance and the mechanical performance or efficiency of upper-limb prostheses; specifically, the ones that are relevant for 3D-printed body-powered prostheses. Then, the adaptations needed to apply these methods to 3D-printed prostheses are discussed. Finally, recommendations are given for prosthetists and researchers in order to execute reliable tests that can be compared across different hand prosthesis designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear CMOS Image Sensor with SOC Integrated Local Contrast Stretch for Bio-Microfluidic Imaging [Regular Paper] Recovering a Chemotopic Feature Space from a Group of Fruit Fly Antenna Chemosensors A Systems Biology Approach to Model Gene-Gene Interaction for Childhood Sarcomas Finite Element Modelling for the Detection of Breast Tumor [Regular Paper] Implementation of an Ultrasound Platform for Proposed Photoacoustic Image Reconstruction Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1