IBD:基于深度学习的物联网大数据处理反馈框架

V. Mishra, Vivek Kumar, Neeraj Kumar Pandey
{"title":"IBD:基于深度学习的物联网大数据处理反馈框架","authors":"V. Mishra, Vivek Kumar, Neeraj Kumar Pandey","doi":"10.1109/SMART52563.2021.9675302","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Network (CNN) and Recurrent Neural Networks (RNNs)have the ability to find the accurate result in images and text respectively. The best classification results are still awaited due to the high cost of computation and high memory requirements of CNN and RNN. Our work suggests a framework that improves the quality of data at various layers by providing feedback to suggested system. The proposed framework leads to an error free processing system.","PeriodicalId":356096,"journal":{"name":"2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"IBD: A Feedback Framework with Deep-learning for IoT-generated Big Data Processing\",\"authors\":\"V. Mishra, Vivek Kumar, Neeraj Kumar Pandey\",\"doi\":\"10.1109/SMART52563.2021.9675302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Network (CNN) and Recurrent Neural Networks (RNNs)have the ability to find the accurate result in images and text respectively. The best classification results are still awaited due to the high cost of computation and high memory requirements of CNN and RNN. Our work suggests a framework that improves the quality of data at various layers by providing feedback to suggested system. The proposed framework leads to an error free processing system.\",\"PeriodicalId\":356096,\"journal\":{\"name\":\"2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMART52563.2021.9675302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMART52563.2021.9675302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

卷积神经网络(CNN)和递归神经网络(RNNs)分别具有在图像和文本中找到准确结果的能力。由于CNN和RNN的高计算成本和高内存要求,仍然等待最佳分类结果。我们的工作提出了一个框架,通过向建议的系统提供反馈来提高各层数据的质量。提出的框架导致了一个无错误的处理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IBD: A Feedback Framework with Deep-learning for IoT-generated Big Data Processing
Convolutional Neural Network (CNN) and Recurrent Neural Networks (RNNs)have the ability to find the accurate result in images and text respectively. The best classification results are still awaited due to the high cost of computation and high memory requirements of CNN and RNN. Our work suggests a framework that improves the quality of data at various layers by providing feedback to suggested system. The proposed framework leads to an error free processing system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Decision Tree Classification (IDT) Algorithm for Social Media Data [Front matter] Object-Text Detection and Recognition System A Review on Organic Cotton: Various Challenges, Issues and Application for Smart Agriculture Machine Learning Methods for Predictive Analytics in Health Care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1