基于梯度的特征空间方法处理闭塞和非高斯噪声

H. Wildenauer, T. Melzer, H. Bischof
{"title":"基于梯度的特征空间方法处理闭塞和非高斯噪声","authors":"H. Wildenauer, T. Melzer, H. Bischof","doi":"10.1109/ICPR.2002.1048469","DOIUrl":null,"url":null,"abstract":"In the recent literature, gradient-based (filtered) eigenspaces have been used as a means to achieve illumination insensitivity. In this paper we show that filtered eigenspaces are also inherently robust w.r.t. (non-Gaussian) noise and occlusions. We argue that this robustness stems essentially from the sparseness of representation and insensitivity w.r.t. shifts in the mean value. This is also demonstrated experimentally using examples from the field of object recognition and pose estimation.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A gradient-based eigenspace approach to dealing with occlusions and non-Gaussian noise\",\"authors\":\"H. Wildenauer, T. Melzer, H. Bischof\",\"doi\":\"10.1109/ICPR.2002.1048469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the recent literature, gradient-based (filtered) eigenspaces have been used as a means to achieve illumination insensitivity. In this paper we show that filtered eigenspaces are also inherently robust w.r.t. (non-Gaussian) noise and occlusions. We argue that this robustness stems essentially from the sparseness of representation and insensitivity w.r.t. shifts in the mean value. This is also demonstrated experimentally using examples from the field of object recognition and pose estimation.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在最近的文献中,基于梯度(滤波)的特征空间已被用作实现光照不敏感的手段。在本文中,我们证明了滤波后的特征空间对于非高斯噪声和遮挡也是固有的鲁棒性。我们认为,这种鲁棒性本质上源于表示的稀疏性和平均值的不敏感性。这也证明了实验中使用的例子从对象识别和姿态估计领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A gradient-based eigenspace approach to dealing with occlusions and non-Gaussian noise
In the recent literature, gradient-based (filtered) eigenspaces have been used as a means to achieve illumination insensitivity. In this paper we show that filtered eigenspaces are also inherently robust w.r.t. (non-Gaussian) noise and occlusions. We argue that this robustness stems essentially from the sparseness of representation and insensitivity w.r.t. shifts in the mean value. This is also demonstrated experimentally using examples from the field of object recognition and pose estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1