R. Punchalard, C. Benjangkaprasert, N. Anantrasirichai, K. Janchitrapongvej
{"title":"用于频率检测的二阶自适应IIR陷波滤波器的鲁棒变步长类lms算法","authors":"R. Punchalard, C. Benjangkaprasert, N. Anantrasirichai, K. Janchitrapongvej","doi":"10.1109/SPAWC.2001.923890","DOIUrl":null,"url":null,"abstract":"The best adaptive algorithm requires fast convergence speed, low variance, unbias and low steady-state mean square error (MSE) in both low and high signal-to-noise ratio (SNR) situations. We have proposed a robust variable step-size LMS-like algorithm (VS-LMS-L) for a second-order adaptive IIR notch filter for frequency detection in radar, sonar and communication systems. This algorithm is compared with the conventional LMS-like algorithm called the plain gradient algorithm (PG). The time-varying step-size /spl mu/(n) is adjusted by using the square of the time-averaged estimate of autocorrelation of the present output signal y(n) and the past one y(n-1). This technique can reject the effect of the uncorrelated noise sequence on the step-size update, resulting in a small MSE due to the small final /spl mu/(n). Moreover, this algorithm can also improve the convergence speed by comparison with the PG at the same MSE value.","PeriodicalId":435867,"journal":{"name":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","volume":"310 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A robust variable step-size LMS-like algorithm for a second-order adaptive IIR notch filter for frequency detection\",\"authors\":\"R. Punchalard, C. Benjangkaprasert, N. Anantrasirichai, K. Janchitrapongvej\",\"doi\":\"10.1109/SPAWC.2001.923890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The best adaptive algorithm requires fast convergence speed, low variance, unbias and low steady-state mean square error (MSE) in both low and high signal-to-noise ratio (SNR) situations. We have proposed a robust variable step-size LMS-like algorithm (VS-LMS-L) for a second-order adaptive IIR notch filter for frequency detection in radar, sonar and communication systems. This algorithm is compared with the conventional LMS-like algorithm called the plain gradient algorithm (PG). The time-varying step-size /spl mu/(n) is adjusted by using the square of the time-averaged estimate of autocorrelation of the present output signal y(n) and the past one y(n-1). This technique can reject the effect of the uncorrelated noise sequence on the step-size update, resulting in a small MSE due to the small final /spl mu/(n). Moreover, this algorithm can also improve the convergence speed by comparison with the PG at the same MSE value.\",\"PeriodicalId\":435867,\"journal\":{\"name\":\"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)\",\"volume\":\"310 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2001.923890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2001.923890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A robust variable step-size LMS-like algorithm for a second-order adaptive IIR notch filter for frequency detection
The best adaptive algorithm requires fast convergence speed, low variance, unbias and low steady-state mean square error (MSE) in both low and high signal-to-noise ratio (SNR) situations. We have proposed a robust variable step-size LMS-like algorithm (VS-LMS-L) for a second-order adaptive IIR notch filter for frequency detection in radar, sonar and communication systems. This algorithm is compared with the conventional LMS-like algorithm called the plain gradient algorithm (PG). The time-varying step-size /spl mu/(n) is adjusted by using the square of the time-averaged estimate of autocorrelation of the present output signal y(n) and the past one y(n-1). This technique can reject the effect of the uncorrelated noise sequence on the step-size update, resulting in a small MSE due to the small final /spl mu/(n). Moreover, this algorithm can also improve the convergence speed by comparison with the PG at the same MSE value.