全局优化的近似退火搜索算法及其与随机逼近的联系

Jiaqiao Hu, Ping Hu
{"title":"全局优化的近似退火搜索算法及其与随机逼近的联系","authors":"Jiaqiao Hu, Ping Hu","doi":"10.1109/WSC.2010.5679070","DOIUrl":null,"url":null,"abstract":"The Annealing Adaptive Search (AAS) algorithm searches the feasible region of an optimization problem by generating candidate solutions from a sequence of Boltzmann distributions. However, the difficulty of sampling from a Boltzmann distribution at each iteration of the algorithm limits its applications to practical problems. To address this difficulty, we propose an approximation of AAS, called Model-based Annealing Random Search (MARS), that samples solutions from a sequence of surrogate distributions that iteratively approximate the target Boltzmann distributions. We present the global convergence properties of MARS by exploiting its connection to the stochastic approximation method and report on numerical results.","PeriodicalId":272260,"journal":{"name":"Proceedings of the 2010 Winter Simulation Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An approximate Annealing Search algorithm to global optimization and its connection to stochastic approximation\",\"authors\":\"Jiaqiao Hu, Ping Hu\",\"doi\":\"10.1109/WSC.2010.5679070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Annealing Adaptive Search (AAS) algorithm searches the feasible region of an optimization problem by generating candidate solutions from a sequence of Boltzmann distributions. However, the difficulty of sampling from a Boltzmann distribution at each iteration of the algorithm limits its applications to practical problems. To address this difficulty, we propose an approximation of AAS, called Model-based Annealing Random Search (MARS), that samples solutions from a sequence of surrogate distributions that iteratively approximate the target Boltzmann distributions. We present the global convergence properties of MARS by exploiting its connection to the stochastic approximation method and report on numerical results.\",\"PeriodicalId\":272260,\"journal\":{\"name\":\"Proceedings of the 2010 Winter Simulation Conference\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2010 Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2010.5679070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2010 Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2010.5679070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

退火自适应搜索(AAS)算法通过从一系列玻尔兹曼分布中生成候选解来搜索优化问题的可行域。然而,在每次迭代时从玻尔兹曼分布中采样的困难限制了该算法在实际问题中的应用。为了解决这一困难,我们提出了一种近似的AAS,称为基于模型的退火随机搜索(MARS),它从迭代近似目标玻尔兹曼分布的代理分布序列中采样解。利用MARS与随机逼近方法的联系,给出了它的全局收敛性,并给出了数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An approximate Annealing Search algorithm to global optimization and its connection to stochastic approximation
The Annealing Adaptive Search (AAS) algorithm searches the feasible region of an optimization problem by generating candidate solutions from a sequence of Boltzmann distributions. However, the difficulty of sampling from a Boltzmann distribution at each iteration of the algorithm limits its applications to practical problems. To address this difficulty, we propose an approximation of AAS, called Model-based Annealing Random Search (MARS), that samples solutions from a sequence of surrogate distributions that iteratively approximate the target Boltzmann distributions. We present the global convergence properties of MARS by exploiting its connection to the stochastic approximation method and report on numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An exploration of the effects of maintenance manning on Combat Mission Readiness utilizing agent based modeling Project management simulation with PTB Project Team Builder Agent-based simulation tutorial - simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation Modeling and simulation method to find and eliminate bottlenecks in production logistics systems Machine control level simulation of an AS/RS in the automotive industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1