利用声学衰减特征优化水管中泄漏传感器的布置

Akihiro Koyama, Y. Sugita, A. Isobe, Yudai Kamada, M. Degawa, Toshiyuki Mine, T. Kawamoto
{"title":"利用声学衰减特征优化水管中泄漏传感器的布置","authors":"Akihiro Koyama, Y. Sugita, A. Isobe, Yudai Kamada, M. Degawa, Toshiyuki Mine, T. Kawamoto","doi":"10.1109/SENSORS52175.2022.9967248","DOIUrl":null,"url":null,"abstract":"Leakage detection using integrated wireless vibration sensors has been minimizing labor in water pipe networks. Specifically, vibration sensors with a built-in low-noise micro-electro-mechanical systems (MEMS) accelerometer can detect leakage-induced acoustic waves at long ranges. Automatic sensor placement optimization provides sufficient coverage and minimizes the required number of sensors. This can save weeks of manual labor selecting the installation positions of 1,000 or more sensors in a city-scale pipe network. However, the detection distance of a vibration sensor varies based on the piping conditions around the sensor installation position, often causing mismatching between estimated and actual coverage. Therefore, we propose a novel sensor placement optimization method that utilizes the acoustic attenuation features of water piping structures. We successfully utilize it with a city-scale pipe network and optimize placement of 2,997 sensors in one day. We achieve coverage of over 95% regardless of the piping conditions, indicating our method would be sufficient for practical use.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leakage Sensor Placement Optimization Using Acoustic Attenuation Features in Water Mains\",\"authors\":\"Akihiro Koyama, Y. Sugita, A. Isobe, Yudai Kamada, M. Degawa, Toshiyuki Mine, T. Kawamoto\",\"doi\":\"10.1109/SENSORS52175.2022.9967248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leakage detection using integrated wireless vibration sensors has been minimizing labor in water pipe networks. Specifically, vibration sensors with a built-in low-noise micro-electro-mechanical systems (MEMS) accelerometer can detect leakage-induced acoustic waves at long ranges. Automatic sensor placement optimization provides sufficient coverage and minimizes the required number of sensors. This can save weeks of manual labor selecting the installation positions of 1,000 or more sensors in a city-scale pipe network. However, the detection distance of a vibration sensor varies based on the piping conditions around the sensor installation position, often causing mismatching between estimated and actual coverage. Therefore, we propose a novel sensor placement optimization method that utilizes the acoustic attenuation features of water piping structures. We successfully utilize it with a city-scale pipe network and optimize placement of 2,997 sensors in one day. We achieve coverage of over 95% regardless of the piping conditions, indicating our method would be sufficient for practical use.\",\"PeriodicalId\":120357,\"journal\":{\"name\":\"2022 IEEE Sensors\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS52175.2022.9967248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用集成无线振动传感器进行泄漏检测,可以最大限度地减少管网中的人工。具体来说,带有内置低噪声微机电系统(MEMS)加速度计的振动传感器可以在远距离检测泄漏引起的声波。自动传感器放置优化提供了足够的覆盖范围,并最大限度地减少了所需的传感器数量。这可以节省数周的手工劳动,在城市规模的管网中选择1,000个或更多传感器的安装位置。然而,振动传感器的检测距离会根据传感器安装位置周围的管道状况而变化,这往往会导致估计覆盖范围与实际覆盖范围不匹配。因此,我们提出了一种利用水管结构声衰减特性的传感器布置优化方法。我们成功地将其用于城市规模的管网,并在一天内优化了2,997个传感器的位置。无论管道状况如何,我们都实现了95%以上的覆盖率,这表明我们的方法足以用于实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leakage Sensor Placement Optimization Using Acoustic Attenuation Features in Water Mains
Leakage detection using integrated wireless vibration sensors has been minimizing labor in water pipe networks. Specifically, vibration sensors with a built-in low-noise micro-electro-mechanical systems (MEMS) accelerometer can detect leakage-induced acoustic waves at long ranges. Automatic sensor placement optimization provides sufficient coverage and minimizes the required number of sensors. This can save weeks of manual labor selecting the installation positions of 1,000 or more sensors in a city-scale pipe network. However, the detection distance of a vibration sensor varies based on the piping conditions around the sensor installation position, often causing mismatching between estimated and actual coverage. Therefore, we propose a novel sensor placement optimization method that utilizes the acoustic attenuation features of water piping structures. We successfully utilize it with a city-scale pipe network and optimize placement of 2,997 sensors in one day. We achieve coverage of over 95% regardless of the piping conditions, indicating our method would be sufficient for practical use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-intrusive Water Flow Rate Measurement: A TEG-powered Ultrasonic Sensing Approach Design of optical inclinometer composed of a ball lens and viscosity fluid to improve focusing Fall Event Detection using Vision Transformer Porous Silicon-Based Microspectral Unit for Real-Time Moisture Detection in a Battery-less Smart Mask Twisted and Coiled Carbon Nanotube Yarn Muscle Embedding Ferritin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1