保护软件定义网络的智能模型

Mohammed I. Alghamdi, Abeer. Y. Salawi, Salwa Alghamdi
{"title":"保护软件定义网络的智能模型","authors":"Mohammed I. Alghamdi, Abeer. Y. Salawi, Salwa Alghamdi","doi":"10.54216/jcim.0100101","DOIUrl":null,"url":null,"abstract":"Software defined networks (SDN) remain a hot research field as it provides controllable networking operations. The SDN controller can be treated as the operating system of the SDN model and it holds the responsibility of performing different networking applications. Despite the benefits of SDN, security remains a challenging problem. At the same time, distributed denial of services (DDoS) is a typical attack on SDN owing to centralized architecture, especially at the control layer of the SDN. This article develops a new Cat Swarm Optimization with Fuzzy Rule Base Classification (CSO-FRBCC) model for cybersecurity in SDN. The presented CSO-FRBCC model intends to effectually categorize the occurrence of DDoS attacks in SDN. To achieve this, the CSO-FRBCC model primarily pre-processes the input data to transform it to a uniform format. Besides, the CSO-FRBCC model employs FRBCC classifier for the recognition and classification of intrusions. Moreover, the parameter optimization of the FRBCC classification model is adjusted by the use of cat swarm optimization (CSO) algorithm which results in improved performance. A comprehensive set of simulations were carried out on benchmark dataset and the results highlighted the enhanced outcomes of the CSO-FRBCC model over the other recent approaches.","PeriodicalId":169383,"journal":{"name":"Journal of Cybersecurity and Information Management","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Model for Securing Software Defined Networks\",\"authors\":\"Mohammed I. Alghamdi, Abeer. Y. Salawi, Salwa Alghamdi\",\"doi\":\"10.54216/jcim.0100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software defined networks (SDN) remain a hot research field as it provides controllable networking operations. The SDN controller can be treated as the operating system of the SDN model and it holds the responsibility of performing different networking applications. Despite the benefits of SDN, security remains a challenging problem. At the same time, distributed denial of services (DDoS) is a typical attack on SDN owing to centralized architecture, especially at the control layer of the SDN. This article develops a new Cat Swarm Optimization with Fuzzy Rule Base Classification (CSO-FRBCC) model for cybersecurity in SDN. The presented CSO-FRBCC model intends to effectually categorize the occurrence of DDoS attacks in SDN. To achieve this, the CSO-FRBCC model primarily pre-processes the input data to transform it to a uniform format. Besides, the CSO-FRBCC model employs FRBCC classifier for the recognition and classification of intrusions. Moreover, the parameter optimization of the FRBCC classification model is adjusted by the use of cat swarm optimization (CSO) algorithm which results in improved performance. A comprehensive set of simulations were carried out on benchmark dataset and the results highlighted the enhanced outcomes of the CSO-FRBCC model over the other recent approaches.\",\"PeriodicalId\":169383,\"journal\":{\"name\":\"Journal of Cybersecurity and Information Management\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cybersecurity and Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jcim.0100101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cybersecurity and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jcim.0100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软件定义网络(SDN)由于能够提供可控的网络操作,一直是研究的热点。SDN控制器可以看作是SDN模型的操作系统,它负责执行不同的网络应用程序。尽管SDN有很多好处,但安全性仍然是一个具有挑战性的问题。同时,分布式拒绝服务(DDoS, distributed denial of services)是针对SDN的一种典型攻击方式,其集中式架构尤其体现在SDN的控制层。本文提出了一种新的基于模糊规则基分类的Cat群优化(CSO-FRBCC)网络安全模型。本文提出的CSO-FRBCC模型旨在对SDN中DDoS攻击的发生进行有效的分类。为了实现这一点,CSO-FRBCC模型主要对输入数据进行预处理,将其转换为统一的格式。此外,CSO-FRBCC模型采用FRBCC分类器对入侵进行识别和分类。此外,采用猫群优化(CSO)算法对FRBCC分类模型的参数优化进行调整,提高了分类性能。在基准数据集上进行了一组全面的模拟,结果突出了CSO-FRBCC模型优于其他最新方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart Model for Securing Software Defined Networks
Software defined networks (SDN) remain a hot research field as it provides controllable networking operations. The SDN controller can be treated as the operating system of the SDN model and it holds the responsibility of performing different networking applications. Despite the benefits of SDN, security remains a challenging problem. At the same time, distributed denial of services (DDoS) is a typical attack on SDN owing to centralized architecture, especially at the control layer of the SDN. This article develops a new Cat Swarm Optimization with Fuzzy Rule Base Classification (CSO-FRBCC) model for cybersecurity in SDN. The presented CSO-FRBCC model intends to effectually categorize the occurrence of DDoS attacks in SDN. To achieve this, the CSO-FRBCC model primarily pre-processes the input data to transform it to a uniform format. Besides, the CSO-FRBCC model employs FRBCC classifier for the recognition and classification of intrusions. Moreover, the parameter optimization of the FRBCC classification model is adjusted by the use of cat swarm optimization (CSO) algorithm which results in improved performance. A comprehensive set of simulations were carried out on benchmark dataset and the results highlighted the enhanced outcomes of the CSO-FRBCC model over the other recent approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A Systematic Review of Privacy Preserving Healthcare Data Sharing on Blockchain Design, development and performance estimation of 110 kW kinetic heating simulation facilities for material studies–Phase I Impact of Cyber Attack on Saudi Aramco Image Classification Based On CNN: A Survey An Artificial Intelligence-based Intrusion Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1