在布尔域上分离无分布和错误约束的学习模型

Avrim Blum
{"title":"在布尔域上分离无分布和错误约束的学习模型","authors":"Avrim Blum","doi":"10.1109/FSCS.1990.89540","DOIUrl":null,"url":null,"abstract":"Two of the most commonly used models in computational learning theory are the distribution-free model, in which examples are chosen from a fixed but arbitrary distribution, and the absolute mistake-bound model, in which examples are presented in order by an adversary. Over the Boolean domain","PeriodicalId":271949,"journal":{"name":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","volume":"353 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Separating distribution-free and mistake-bound learning models over the Boolean domain\",\"authors\":\"Avrim Blum\",\"doi\":\"10.1109/FSCS.1990.89540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two of the most commonly used models in computational learning theory are the distribution-free model, in which examples are chosen from a fixed but arbitrary distribution, and the absolute mistake-bound model, in which examples are presented in order by an adversary. Over the Boolean domain\",\"PeriodicalId\":271949,\"journal\":{\"name\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"volume\":\"353 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSCS.1990.89540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSCS.1990.89540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

摘要

计算学习理论中最常用的两种模型是无分布模型,其中示例从固定但任意的分布中选择,以及绝对错误约束模型,其中示例由对手按顺序呈现。在布尔域上
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Separating distribution-free and mistake-bound learning models over the Boolean domain
Two of the most commonly used models in computational learning theory are the distribution-free model, in which examples are chosen from a fixed but arbitrary distribution, and the absolute mistake-bound model, in which examples are presented in order by an adversary. Over the Boolean domain
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online algorithms for finger searching Multiple non-interactive zero knowledge proofs based on a single random string Simple construction of almost k-wise independent random variables On the diameter of finite groups Drawing graphs in the plane with high resolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1