用分析方法估计巴基斯坦Jhimpir地区风速的威布尔分布参数——一个比较评估

G. Abbas, J. Gu, M. Asad, V. E. Balas, U. Farooq, I. Khan
{"title":"用分析方法估计巴基斯坦Jhimpir地区风速的威布尔分布参数——一个比较评估","authors":"G. Abbas, J. Gu, M. Asad, V. E. Balas, U. Farooq, I. Khan","doi":"10.1109/ETECTE55893.2022.10007311","DOIUrl":null,"url":null,"abstract":"Assessing the potential of a wind farm requires looking into how the wind behaves throughout a certain time frame. One of the most popular ways to statistically model wind data is with the Weibull distribution. Estimating two parameters of the Weibull PDF is crucial for a better fit between the PDF and wind speed data. In this study, Weibull distribution parameters for 2019 wind speed data in the Jhimpir region of Pakistan are determined using four analytical techniques: the empirical method (EM), the maximum likelihood method (MLM), the method of moments (MoM), and the energy pattern factor (EPF) approach. Each technique is evaluated using several different metrics, including the root mean squared error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE), and the coefficient of correlation (R). Statistical analyses show that the shape (k) and scale (c) parameters of the Weibull distribution estimated by the EM, MLM, and MoM are quite close to one another compared to the ones obtained by EPF for the available data. The MATLAB environment-based numerical results expressed that the EPF method performed the best in terms of R and RMSE and worst in terms of MAE and MARE.","PeriodicalId":131572,"journal":{"name":"2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE)","volume":"356 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Weibull Distribution Parameters by Analytical Methods for the Wind Speed of Jhimpir, Pakistan - A Comparative Assessment\",\"authors\":\"G. Abbas, J. Gu, M. Asad, V. E. Balas, U. Farooq, I. Khan\",\"doi\":\"10.1109/ETECTE55893.2022.10007311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessing the potential of a wind farm requires looking into how the wind behaves throughout a certain time frame. One of the most popular ways to statistically model wind data is with the Weibull distribution. Estimating two parameters of the Weibull PDF is crucial for a better fit between the PDF and wind speed data. In this study, Weibull distribution parameters for 2019 wind speed data in the Jhimpir region of Pakistan are determined using four analytical techniques: the empirical method (EM), the maximum likelihood method (MLM), the method of moments (MoM), and the energy pattern factor (EPF) approach. Each technique is evaluated using several different metrics, including the root mean squared error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE), and the coefficient of correlation (R). Statistical analyses show that the shape (k) and scale (c) parameters of the Weibull distribution estimated by the EM, MLM, and MoM are quite close to one another compared to the ones obtained by EPF for the available data. The MATLAB environment-based numerical results expressed that the EPF method performed the best in terms of R and RMSE and worst in terms of MAE and MARE.\",\"PeriodicalId\":131572,\"journal\":{\"name\":\"2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE)\",\"volume\":\"356 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETECTE55893.2022.10007311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETECTE55893.2022.10007311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评估风电场的潜力需要研究风在特定时间范围内的表现。对风数据进行统计建模的最常用方法之一是威布尔分布。对威布尔风场的两个参数的估计是使风场与风速数据更好地拟合的关键。本文采用经验法(EM)、最大似然法(MLM)、矩量法(MoM)和能量模式因子法(EPF)四种分析方法,确定了巴基斯坦Jhimpir地区2019年风速数据的威布尔分布参数。每种技术都使用几个不同的指标进行评估,包括均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对相对误差(MARE)和相关系数(R)。统计分析表明,EM、MLM和MoM估计的威布尔分布的形状(k)和规模(c)参数与EPF对可用数据的估计非常接近。基于MATLAB环境的数值结果表明,EPF方法在R和RMSE方面表现最好,在MAE和MARE方面表现最差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Weibull Distribution Parameters by Analytical Methods for the Wind Speed of Jhimpir, Pakistan - A Comparative Assessment
Assessing the potential of a wind farm requires looking into how the wind behaves throughout a certain time frame. One of the most popular ways to statistically model wind data is with the Weibull distribution. Estimating two parameters of the Weibull PDF is crucial for a better fit between the PDF and wind speed data. In this study, Weibull distribution parameters for 2019 wind speed data in the Jhimpir region of Pakistan are determined using four analytical techniques: the empirical method (EM), the maximum likelihood method (MLM), the method of moments (MoM), and the energy pattern factor (EPF) approach. Each technique is evaluated using several different metrics, including the root mean squared error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE), and the coefficient of correlation (R). Statistical analyses show that the shape (k) and scale (c) parameters of the Weibull distribution estimated by the EM, MLM, and MoM are quite close to one another compared to the ones obtained by EPF for the available data. The MATLAB environment-based numerical results expressed that the EPF method performed the best in terms of R and RMSE and worst in terms of MAE and MARE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embedded Hash Codes for Image Similarity Detection and Tamper Proofing Outliers Detection and Repairing Technique for Measurement Data in the Distribution System 5th order Modeling, Control and Steady-State Validation of Wind Turbine Based on DFIG Propagation Channel Characterization of 28 GHz and 36 GHz Millimeter-Waves for 5G Cellular Networks Autonomous Vehicle Health Monitoring Based on Cloud-Fog Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1