面向上行海量MIMO的前传压缩QR逼近

P. Aswathylakshmi, R. Ganti
{"title":"面向上行海量MIMO的前传压缩QR逼近","authors":"P. Aswathylakshmi, R. Ganti","doi":"10.1109/GCWkshps45667.2019.9024609","DOIUrl":null,"url":null,"abstract":"Massive MIMO's immense potential to expand the capacity of base stations also comes with the caveat of requiring tremendous processing power. This favours a centralized radio access network (C-RAN) architecture that concentrates the processing power at a common baseband unit (BBU) connected to multiple remote radio heads (RRH) via fronthaul links. The large bandwidths of 5G make the fronthaul data rate a major bottleneck. Since the number of active users in a massive MIMO system is much smaller than the number of antennas, we propose a dimension reduction scheme based on QR approximation for fronthaul data compression. Link level simulations show that the proposed method achieves more than 17Ã- compression while also improving the error performance of the system through denoising.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":"47 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"QR Approximation for Fronthaul Compression in Uplink Massive MIMO\",\"authors\":\"P. Aswathylakshmi, R. Ganti\",\"doi\":\"10.1109/GCWkshps45667.2019.9024609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive MIMO's immense potential to expand the capacity of base stations also comes with the caveat of requiring tremendous processing power. This favours a centralized radio access network (C-RAN) architecture that concentrates the processing power at a common baseband unit (BBU) connected to multiple remote radio heads (RRH) via fronthaul links. The large bandwidths of 5G make the fronthaul data rate a major bottleneck. Since the number of active users in a massive MIMO system is much smaller than the number of antennas, we propose a dimension reduction scheme based on QR approximation for fronthaul data compression. Link level simulations show that the proposed method achieves more than 17Ã- compression while also improving the error performance of the system through denoising.\",\"PeriodicalId\":210825,\"journal\":{\"name\":\"2019 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"47 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCWkshps45667.2019.9024609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大规模MIMO在扩大基站容量方面的巨大潜力,也伴随着需要巨大处理能力的警告。这有利于集中式无线电接入网(C-RAN)架构,该架构将处理能力集中在通过前传链路连接到多个远程无线电头(RRH)的公共基带单元(BBU)上。5G的大带宽使前传数据速率成为主要瓶颈。针对大规模MIMO系统中活跃用户数量远小于天线数量的问题,提出了一种基于QR逼近的前传数据降维压缩方案。链路级仿真结果表明,该方法在实现17Ã-以上压缩的同时,还通过去噪改善了系统的误差性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QR Approximation for Fronthaul Compression in Uplink Massive MIMO
Massive MIMO's immense potential to expand the capacity of base stations also comes with the caveat of requiring tremendous processing power. This favours a centralized radio access network (C-RAN) architecture that concentrates the processing power at a common baseband unit (BBU) connected to multiple remote radio heads (RRH) via fronthaul links. The large bandwidths of 5G make the fronthaul data rate a major bottleneck. Since the number of active users in a massive MIMO system is much smaller than the number of antennas, we propose a dimension reduction scheme based on QR approximation for fronthaul data compression. Link level simulations show that the proposed method achieves more than 17Ã- compression while also improving the error performance of the system through denoising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Timeliness Analysis of Service-Driven Collaborative Mobile Edge Computing in UAV Swarm 5G Enabled Mobile Healthcare for Ambulances Secure Quantized Sequential Detection in the Internet of Things with Eavesdroppers A Novel Indoor Coverage Measurement Scheme Based on FRFT and Gaussian Process Regression A Data-Driven Deep Neural Network Pruning Approach Towards Efficient Digital Signal Modulation Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1