钢-纤维混凝土圆空心截面组合柱高温剪切破坏研究

T. Arha, V. Krístek, A. Tretyakov, L. Blesák, I. Tkalenko, F. Wald, R. Štefan, J. Novák, A. Kohoutková
{"title":"钢-纤维混凝土圆空心截面组合柱高温剪切破坏研究","authors":"T. Arha, V. Krístek, A. Tretyakov, L. Blesák, I. Tkalenko, F. Wald, R. Štefan, J. Novák, A. Kohoutková","doi":"10.4995/ASCCS2018.2018.7201","DOIUrl":null,"url":null,"abstract":"This study predicts the shear strength of steel fibre reinforced concrete (SFRC) members at elevated temperature using numerical modelling. The authors derived the stress-strain relation in the pure shear mode at ambient temperature based on a damage model calibrated at ambient and elevated temperatures. The model was validated on the special experimental arrangement for the pure shear mode of the SFRC in torsion. These results enables to determine the stress-strain diagram at elevated temperature. The shear strength of SFRC is compared with the compressive and tensile strength and used to observe reasons for experimentally observed failure model. The work is a part of comprehensive project focused on development of design models for the steel and SFRC composite columns with circular hollow section (CHS) at elevated temperature. Research includes two levels accuracy/complexity, allowing simplified or advanced approach to design following the coming changes in European standard for composite member design in fire, EN1994-1-2:2021. Experimental studies of the project include mechanical material tests of heated fibre-concrete samples in tension and compression, thermal uniform and non-uniform tests of insulated fragments of CHS and tests of full scale SFRC CHS columns in steady-state and transient-state regimes. Developing advanced FEM simulation of global mechanical behaviour of SFRC CHS columns is a multi-levelled composite mechanical and thermo-model and provide numerous numerical experiments. Together with steel material model in fire, validated FEM model of mechanical behaviour of fibre-reinforce concrete at elevated temperature is performed. Validated simplified and advanced thermal model of SFRC in CHS at elevated temperature gives temperature fields and moisture distribution inside section which depends on direction, heat flux, sizes and gives possibility to model different fire cases of full-scale columns in bending, shear, and buckling at elevated temperature. Proposed analytical and simplified FEM mechanical model of column is taking into account degradation of mechanical properties, analytical models of transfer of heat inside the column section and provides simple solutions for designers. ","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"46 Suppl 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"To shear failure of steel and fibre-reinforced concrete circular hollow section composite column at elevated temperature\",\"authors\":\"T. Arha, V. Krístek, A. Tretyakov, L. Blesák, I. Tkalenko, F. Wald, R. Štefan, J. Novák, A. Kohoutková\",\"doi\":\"10.4995/ASCCS2018.2018.7201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study predicts the shear strength of steel fibre reinforced concrete (SFRC) members at elevated temperature using numerical modelling. The authors derived the stress-strain relation in the pure shear mode at ambient temperature based on a damage model calibrated at ambient and elevated temperatures. The model was validated on the special experimental arrangement for the pure shear mode of the SFRC in torsion. These results enables to determine the stress-strain diagram at elevated temperature. The shear strength of SFRC is compared with the compressive and tensile strength and used to observe reasons for experimentally observed failure model. The work is a part of comprehensive project focused on development of design models for the steel and SFRC composite columns with circular hollow section (CHS) at elevated temperature. Research includes two levels accuracy/complexity, allowing simplified or advanced approach to design following the coming changes in European standard for composite member design in fire, EN1994-1-2:2021. Experimental studies of the project include mechanical material tests of heated fibre-concrete samples in tension and compression, thermal uniform and non-uniform tests of insulated fragments of CHS and tests of full scale SFRC CHS columns in steady-state and transient-state regimes. Developing advanced FEM simulation of global mechanical behaviour of SFRC CHS columns is a multi-levelled composite mechanical and thermo-model and provide numerous numerical experiments. Together with steel material model in fire, validated FEM model of mechanical behaviour of fibre-reinforce concrete at elevated temperature is performed. Validated simplified and advanced thermal model of SFRC in CHS at elevated temperature gives temperature fields and moisture distribution inside section which depends on direction, heat flux, sizes and gives possibility to model different fire cases of full-scale columns in bending, shear, and buckling at elevated temperature. Proposed analytical and simplified FEM mechanical model of column is taking into account degradation of mechanical properties, analytical models of transfer of heat inside the column section and provides simple solutions for designers. \",\"PeriodicalId\":320267,\"journal\":{\"name\":\"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018\",\"volume\":\"46 Suppl 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/ASCCS2018.2018.7201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/ASCCS2018.2018.7201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用数值模拟方法对钢纤维混凝土构件在高温下的抗剪强度进行了预测。基于室温和高温下标定的损伤模型,推导了室温下纯剪切模式下的应力-应变关系。采用特殊的试验布置对该模型进行了验证。这些结果可以确定高温下的应力应变图。将SFRC的抗剪强度与抗压和抗拉强度进行对比,并用于观察实验观察破坏模型的原因。本研究是高温下圆空心截面钢与钢纤维复合柱设计模型研究的一部分。研究包括两个级别的精度/复杂性,允许简化或先进的设计方法,以遵循欧洲防火复合材料构件设计标准en1994 -1- 2:21 21即将发生的变化。该项目的实验研究包括加热纤维混凝土试样在拉伸和压缩下的机械材料测试,CHS绝缘碎片的热均匀和非均匀测试以及全尺寸SFRC CHS柱在稳态和瞬态状态下的测试。发展先进的钢纤维混凝土混凝土柱整体力学行为有限元模拟是一种多层复合力学和热模型,并提供了大量的数值实验。结合火灾中钢筋材料模型,建立了经验证的纤维增强混凝土高温力学性能有限元模型。经验证的高温条件下SFRC简化高级热模型给出了截面内温度场和水分随方向、热流密度和尺寸的分布规律,为模拟全尺寸柱在高温条件下弯曲、剪切和屈曲的不同火灾情况提供了可能。本文提出的柱的解析和简化有限元力学模型考虑了柱的力学性能退化、柱截面内传热的解析模型,为设计人员提供了简单的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
To shear failure of steel and fibre-reinforced concrete circular hollow section composite column at elevated temperature
This study predicts the shear strength of steel fibre reinforced concrete (SFRC) members at elevated temperature using numerical modelling. The authors derived the stress-strain relation in the pure shear mode at ambient temperature based on a damage model calibrated at ambient and elevated temperatures. The model was validated on the special experimental arrangement for the pure shear mode of the SFRC in torsion. These results enables to determine the stress-strain diagram at elevated temperature. The shear strength of SFRC is compared with the compressive and tensile strength and used to observe reasons for experimentally observed failure model. The work is a part of comprehensive project focused on development of design models for the steel and SFRC composite columns with circular hollow section (CHS) at elevated temperature. Research includes two levels accuracy/complexity, allowing simplified or advanced approach to design following the coming changes in European standard for composite member design in fire, EN1994-1-2:2021. Experimental studies of the project include mechanical material tests of heated fibre-concrete samples in tension and compression, thermal uniform and non-uniform tests of insulated fragments of CHS and tests of full scale SFRC CHS columns in steady-state and transient-state regimes. Developing advanced FEM simulation of global mechanical behaviour of SFRC CHS columns is a multi-levelled composite mechanical and thermo-model and provide numerous numerical experiments. Together with steel material model in fire, validated FEM model of mechanical behaviour of fibre-reinforce concrete at elevated temperature is performed. Validated simplified and advanced thermal model of SFRC in CHS at elevated temperature gives temperature fields and moisture distribution inside section which depends on direction, heat flux, sizes and gives possibility to model different fire cases of full-scale columns in bending, shear, and buckling at elevated temperature. Proposed analytical and simplified FEM mechanical model of column is taking into account degradation of mechanical properties, analytical models of transfer of heat inside the column section and provides simple solutions for designers. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel one-sided push-out test for shear connectors in composite beams Bending Moment Capacity of Stainless Steel-Concrete Composite Beams COMPARISON OF DESIGN FOR COMPOSITE COLUMNS IN STEEL AND CONCRETE ACCORDING TO EUROCODE 4 AND CHINESE DESIGN CODES An innovative concrete-steel structural system allowing for a fast and simple erection Influence of joint rigidity on the elastic buckling load of sway and non-sway steel frames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1