一种自适应小波滤波器设计方法

N. Neretti, N. Intrator
{"title":"一种自适应小波滤波器设计方法","authors":"N. Neretti, N. Intrator","doi":"10.1109/NNSP.2002.1030043","DOIUrl":null,"url":null,"abstract":"We present a general framework for the design of a mother wavelet best adapted to a specific signal or to a class of signals. The filter's coefficients are obtained via optimization of a smooth objective function. We develop an unconstrained gradient-based optimization algorithm for a discrete wavelet transform. The algorithm is extended to the joint optimization of the mother wavelet and of the wavelet packets basis.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"An adaptive approach to wavelet filters design\",\"authors\":\"N. Neretti, N. Intrator\",\"doi\":\"10.1109/NNSP.2002.1030043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a general framework for the design of a mother wavelet best adapted to a specific signal or to a class of signals. The filter's coefficients are obtained via optimization of a smooth objective function. We develop an unconstrained gradient-based optimization algorithm for a discrete wavelet transform. The algorithm is extended to the joint optimization of the mother wavelet and of the wavelet packets basis.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们提出了一个通用的框架,以设计最适合于特定信号或一类信号的母小波。滤波器的系数是通过光滑目标函数的优化得到的。提出了一种离散小波变换的无约束梯度优化算法。将该算法推广到母小波和小波包基的联合优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An adaptive approach to wavelet filters design
We present a general framework for the design of a mother wavelet best adapted to a specific signal or to a class of signals. The filter's coefficients are obtained via optimization of a smooth objective function. We develop an unconstrained gradient-based optimization algorithm for a discrete wavelet transform. The algorithm is extended to the joint optimization of the mother wavelet and of the wavelet packets basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of multiple experts in multimodal biometric personal identity verification systems A new SOLPN-based rate control algorithm for MPEG video coding Analog implementation for networks of integrate-and-fire neurons with adaptive local connectivity Removal of residual crosstalk components in blind source separation using LMS filters Functional connectivity modelling in fMRI based on causal networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1