抓住用户期望的时刻:运行时检查并行数据流系统

Youfu Li, Matteo Interlandi, Fotis Psallidas, Wei Wang, C. Zaniolo
{"title":"抓住用户期望的时刻:运行时检查并行数据流系统","authors":"Youfu Li, Matteo Interlandi, Fotis Psallidas, Wei Wang, C. Zaniolo","doi":"10.1109/ICDCS47774.2020.00147","DOIUrl":null,"url":null,"abstract":"In Data-Intensive Scalable Computing (DISC) Systems, data transformations are concealed by exposed APIs, and intermediate execution moments are masked under dataflow transitions. Consequently, many crucial features and optimizations (e.g., debugging, data provenance, runtime skew detection) are not well-supported. Inspired by our experience in implementing features and optimizations over DISC systems, we present SEIZE, a unified framework that enables dataflow inspection— wiretapping the data-path with listening logic —in MapReduce-style programming model. We generalize our lessons learned by providing a set of primitives defining dataflow inspection, orchestration options for different inspection granularities, and operator decomposition and dataflow puncutation strategy for dataflow intervention. We demonstrate the generality and flexibility of the approach by deploying SEIZE in both Apache Spark and Apache Flink. Our experiments show that, the overhead introduced by the inspection logic is most of the time negligible (less than 5% in Spark and 10% in Flink).","PeriodicalId":158630,"journal":{"name":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SEIZE User Desired Moments: Runtime Inspection for Parallel Dataflow Systems\",\"authors\":\"Youfu Li, Matteo Interlandi, Fotis Psallidas, Wei Wang, C. Zaniolo\",\"doi\":\"10.1109/ICDCS47774.2020.00147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Data-Intensive Scalable Computing (DISC) Systems, data transformations are concealed by exposed APIs, and intermediate execution moments are masked under dataflow transitions. Consequently, many crucial features and optimizations (e.g., debugging, data provenance, runtime skew detection) are not well-supported. Inspired by our experience in implementing features and optimizations over DISC systems, we present SEIZE, a unified framework that enables dataflow inspection— wiretapping the data-path with listening logic —in MapReduce-style programming model. We generalize our lessons learned by providing a set of primitives defining dataflow inspection, orchestration options for different inspection granularities, and operator decomposition and dataflow puncutation strategy for dataflow intervention. We demonstrate the generality and flexibility of the approach by deploying SEIZE in both Apache Spark and Apache Flink. Our experiments show that, the overhead introduced by the inspection logic is most of the time negligible (less than 5% in Spark and 10% in Flink).\",\"PeriodicalId\":158630,\"journal\":{\"name\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS47774.2020.00147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS47774.2020.00147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数据密集型可扩展计算(DISC)系统中,数据转换被暴露的api隐藏,中间执行时刻被数据流转换掩盖。因此,许多关键的特性和优化(例如,调试、数据来源、运行时倾斜检测)没有得到很好的支持。受我们在DISC系统上实现功能和优化的经验的启发,我们提出了一个统一的框架,可以在mapreduce风格的编程模型中进行数据流检查-使用侦听逻辑窃听数据路径。我们通过提供一组定义数据流检查的原语、不同检查粒度的编排选项以及用于数据流干预的操作符分解和数据流标点策略来概括我们的经验教训。我们通过在Apache Spark和Apache Flink中部署SEIZE来展示这种方法的通用性和灵活性。我们的实验表明,检查逻辑带来的开销在大多数情况下可以忽略不计(在Spark中小于5%,在Flink中小于10%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SEIZE User Desired Moments: Runtime Inspection for Parallel Dataflow Systems
In Data-Intensive Scalable Computing (DISC) Systems, data transformations are concealed by exposed APIs, and intermediate execution moments are masked under dataflow transitions. Consequently, many crucial features and optimizations (e.g., debugging, data provenance, runtime skew detection) are not well-supported. Inspired by our experience in implementing features and optimizations over DISC systems, we present SEIZE, a unified framework that enables dataflow inspection— wiretapping the data-path with listening logic —in MapReduce-style programming model. We generalize our lessons learned by providing a set of primitives defining dataflow inspection, orchestration options for different inspection granularities, and operator decomposition and dataflow puncutation strategy for dataflow intervention. We demonstrate the generality and flexibility of the approach by deploying SEIZE in both Apache Spark and Apache Flink. Our experiments show that, the overhead introduced by the inspection logic is most of the time negligible (less than 5% in Spark and 10% in Flink).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient Edge Offloading Scheme for UAV-Assisted Internet of Things Kill Two Birds with One Stone: Auto-tuning RocksDB for High Bandwidth and Low Latency BlueFi: Physical-layer Cross-Technology Communication from Bluetooth to WiFi [Title page i] Distributionally Robust Edge Learning with Dirichlet Process Prior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1