我们能否打破分布式检测中的依赖关系?

Osama A. Hanna, Xinlin Li, C. Fragouli, S. Diggavi
{"title":"我们能否打破分布式检测中的依赖关系?","authors":"Osama A. Hanna, Xinlin Li, C. Fragouli, S. Diggavi","doi":"10.1109/ISIT50566.2022.9834790","DOIUrl":null,"url":null,"abstract":"We consider a distributed detection problem where sensors observe dependent observations. We ask, if we can allow the sensors to locally exchange a few bits with each other, whether we can use these bits to \"break\" the dependency of the sensor observations, and thus reduce the dependent detection problem to the much better-studied and understood case of conditionally independent observations. To this end, we propose an optimization problem that we prove is equivalent to minimizing the dependency between the sensor observations. This problem is in general NP-hard, however, we show that for at least some cases of Gaussian distributions it can be solved efficiently. For general distributions, we propose to use alternating minimization and derive a constant factor approximation algorithm. Numerical evaluations indicate that our approach can offer significant improvement in detection accuracy over alternative schemes.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"396 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Can we break the dependency in distributed detection?\",\"authors\":\"Osama A. Hanna, Xinlin Li, C. Fragouli, S. Diggavi\",\"doi\":\"10.1109/ISIT50566.2022.9834790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a distributed detection problem where sensors observe dependent observations. We ask, if we can allow the sensors to locally exchange a few bits with each other, whether we can use these bits to \\\"break\\\" the dependency of the sensor observations, and thus reduce the dependent detection problem to the much better-studied and understood case of conditionally independent observations. To this end, we propose an optimization problem that we prove is equivalent to minimizing the dependency between the sensor observations. This problem is in general NP-hard, however, we show that for at least some cases of Gaussian distributions it can be solved efficiently. For general distributions, we propose to use alternating minimization and derive a constant factor approximation algorithm. Numerical evaluations indicate that our approach can offer significant improvement in detection accuracy over alternative schemes.\",\"PeriodicalId\":348168,\"journal\":{\"name\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"396 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT50566.2022.9834790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑一个分布式检测问题,其中传感器观察依赖的观测值。我们的问题是,如果我们可以允许传感器局部交换一些比特,我们是否可以使用这些比特来“打破”传感器观测的依赖,从而将依赖检测问题减少到更好地研究和理解条件独立观测的情况。为此,我们提出了一个优化问题,我们证明了它等同于最小化传感器观测之间的依赖性。这个问题通常是np困难的,然而,我们证明了至少在一些高斯分布的情况下,它可以有效地解决。对于一般分布,我们建议使用交替最小化,并推导出一个常因子近似算法。数值评估表明,我们的方法可以提供显著提高检测精度比其他方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can we break the dependency in distributed detection?
We consider a distributed detection problem where sensors observe dependent observations. We ask, if we can allow the sensors to locally exchange a few bits with each other, whether we can use these bits to "break" the dependency of the sensor observations, and thus reduce the dependent detection problem to the much better-studied and understood case of conditionally independent observations. To this end, we propose an optimization problem that we prove is equivalent to minimizing the dependency between the sensor observations. This problem is in general NP-hard, however, we show that for at least some cases of Gaussian distributions it can be solved efficiently. For general distributions, we propose to use alternating minimization and derive a constant factor approximation algorithm. Numerical evaluations indicate that our approach can offer significant improvement in detection accuracy over alternative schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1