基于大数据系统的事故实时预测

Mouad Tantaoui, M. Laanaoui, M. Kabil
{"title":"基于大数据系统的事故实时预测","authors":"Mouad Tantaoui, M. Laanaoui, M. Kabil","doi":"10.1145/3386723.3387886","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new prediction system in real time using Big Data to improve the VANET network. Firstly, The Traffic density and average speed are calculated in each section of road, and then the risk of vehicle accident is predicted in instantaneous manner with parallel data processing, which makes execution faster.","PeriodicalId":139072,"journal":{"name":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Prediction of Accident using Big Data System\",\"authors\":\"Mouad Tantaoui, M. Laanaoui, M. Kabil\",\"doi\":\"10.1145/3386723.3387886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new prediction system in real time using Big Data to improve the VANET network. Firstly, The Traffic density and average speed are calculated in each section of road, and then the risk of vehicle accident is predicted in instantaneous manner with parallel data processing, which makes execution faster.\",\"PeriodicalId\":139072,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Networking, Information Systems & Security\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Networking, Information Systems & Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386723.3387886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386723.3387886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用大数据对VANET网络进行实时预测的新系统。首先计算各路段的交通密度和平均速度,然后采用并行数据处理的方式进行车辆事故风险的瞬时预测,提高了执行速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time Prediction of Accident using Big Data System
In this paper, we propose a new prediction system in real time using Big Data to improve the VANET network. Firstly, The Traffic density and average speed are calculated in each section of road, and then the risk of vehicle accident is predicted in instantaneous manner with parallel data processing, which makes execution faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive-MIMO Configuration of Multipolarized ULA and UCA in 5G Wireless Communications Enhanced Duplicate Count Strategy: Towards New Algorithms to Improve Duplicate Detection Sensors Transposing Technique for Minimizing the Path Loss Effect and Enhancement of Battery Lifetime in Wireless Body Area Sensor Networks A Survey of Intrusion Detection Algorithm in VANET A Review on Cybersecurity: Challenges & Emerging Threats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1