基于电态图像和卷积神经网络的断路器状态估计

Vladimiro Miranda, Luís Teixeira, J. Pereira
{"title":"基于电态图像和卷积神经网络的断路器状态估计","authors":"Vladimiro Miranda, Luís Teixeira, J. Pereira","doi":"10.1109/ISAP48318.2019.9065958","DOIUrl":null,"url":null,"abstract":"This paper presents a method to identify the status (open or closed) of breakers in network branches, in the absence of status signal or electric measurements on the branch including the breaker. Indirect power measurements from the SCADA are combined to form a 2D image array, which is fed into a Convolutional Neural Network. The image construction is based on ranking measurements with the Cauchy-Schwarz divergence between two signal distributions (for breaker open and closed). The success rate obtained with this technique is close to 100% in the IEEE testbed adopted.","PeriodicalId":316020,"journal":{"name":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Breaker Status with Electrical State Images and Convolutional Neural Networks\",\"authors\":\"Vladimiro Miranda, Luís Teixeira, J. Pereira\",\"doi\":\"10.1109/ISAP48318.2019.9065958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to identify the status (open or closed) of breakers in network branches, in the absence of status signal or electric measurements on the branch including the breaker. Indirect power measurements from the SCADA are combined to form a 2D image array, which is fed into a Convolutional Neural Network. The image construction is based on ranking measurements with the Cauchy-Schwarz divergence between two signal distributions (for breaker open and closed). The success rate obtained with this technique is close to 100% in the IEEE testbed adopted.\",\"PeriodicalId\":316020,\"journal\":{\"name\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP48318.2019.9065958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP48318.2019.9065958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在没有状态信号或没有对包括断路器在内的支路进行电气测量的情况下,识别网络支路中断路器状态(开合)的方法。来自SCADA的间接功率测量被组合成一个二维图像阵列,该图像阵列被馈送到卷积神经网络中。图像构建基于两个信号分布(断路器开和关)之间的Cauchy-Schwarz散度排序测量。在采用的IEEE测试平台上,该技术的成功率接近100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating Breaker Status with Electrical State Images and Convolutional Neural Networks
This paper presents a method to identify the status (open or closed) of breakers in network branches, in the absence of status signal or electric measurements on the branch including the breaker. Indirect power measurements from the SCADA are combined to form a 2D image array, which is fed into a Convolutional Neural Network. The image construction is based on ranking measurements with the Cauchy-Schwarz divergence between two signal distributions (for breaker open and closed). The success rate obtained with this technique is close to 100% in the IEEE testbed adopted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal allocation of multi-type distributed generators for minimization of power losses in distribution systems Forecasting Power Consumption of IT Devices in a Data Center A Framework for Cyber-Physical Model Creation and Evaluation Predictive Maintenance of Air Conditioning Systems Using Supervised Machine Learning Boost Power Factor Correction Converter fed Domestic Induction Heating System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1