基于深度强化学习的机器人路径规划研究

Feng Liu, Changgu Chen, Zhihua Li, Z. Guan, Hua O. Wang
{"title":"基于深度强化学习的机器人路径规划研究","authors":"Feng Liu, Changgu Chen, Zhihua Li, Z. Guan, Hua O. Wang","doi":"10.23919/CCC50068.2020.9188890","DOIUrl":null,"url":null,"abstract":"In this paper, to avoid the problem of local optimization and slow convergence in complex environment, a reinforcement learning algorithm is proposed to solve the problem. A robot path planning model is built and its feasibility is verified by simulation. In addition, this paper proposes a deep environment to neural network for robot camera to establish a deep reinforcement learning path planning model, and establishes a deep recursive Q-network (DRQN) and Deep Dueling Q-network(DDQN) respectively. In the comparison of the final simulation results, DRQN needs to consume more computation time, but can achieve better results with higher accuracy.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"37 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Research on path planning of robot based on deep reinforcement learning\",\"authors\":\"Feng Liu, Changgu Chen, Zhihua Li, Z. Guan, Hua O. Wang\",\"doi\":\"10.23919/CCC50068.2020.9188890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, to avoid the problem of local optimization and slow convergence in complex environment, a reinforcement learning algorithm is proposed to solve the problem. A robot path planning model is built and its feasibility is verified by simulation. In addition, this paper proposes a deep environment to neural network for robot camera to establish a deep reinforcement learning path planning model, and establishes a deep recursive Q-network (DRQN) and Deep Dueling Q-network(DDQN) respectively. In the comparison of the final simulation results, DRQN needs to consume more computation time, but can achieve better results with higher accuracy.\",\"PeriodicalId\":255872,\"journal\":{\"name\":\"2020 39th Chinese Control Conference (CCC)\",\"volume\":\"37 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 39th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CCC50068.2020.9188890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9188890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了避免复杂环境下局部优化和收敛缓慢的问题,本文提出了一种强化学习算法来解决这一问题。建立了机器人路径规划模型,并通过仿真验证了其可行性。此外,本文提出了一种面向机器人摄像机的深度环境神经网络建立深度强化学习路径规划模型,并分别建立了深度递归Q-network(DRQN)和深度决斗Q-network(DDQN)。在最终仿真结果的对比中,DRQN需要消耗更多的计算时间,但可以以更高的精度获得更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on path planning of robot based on deep reinforcement learning
In this paper, to avoid the problem of local optimization and slow convergence in complex environment, a reinforcement learning algorithm is proposed to solve the problem. A robot path planning model is built and its feasibility is verified by simulation. In addition, this paper proposes a deep environment to neural network for robot camera to establish a deep reinforcement learning path planning model, and establishes a deep recursive Q-network (DRQN) and Deep Dueling Q-network(DDQN) respectively. In the comparison of the final simulation results, DRQN needs to consume more computation time, but can achieve better results with higher accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Matrix-based Algorithm for the LS Design of Variable Fractional Delay FIR Filters with Constraints MPC Control and Simulation of a Mixed Recovery Dual Channel Closed-Loop Supply Chain with Lead Time Fractional-order ADRC framework for fractional-order parallel systems A Moving Target Tracking Control and Obstacle Avoidance of Quadrotor UAV Based on Sliding Mode Control Using Artificial Potential Field and RBF Neural Networks Finite-time Pinning Synchronization and Parameters Identification of Markovian Switching Complex Delayed Network with Stochastic Perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1