随机模拟中动态程序切片计算的改进方法和措施

Ross Gore, P. Reynolds
{"title":"随机模拟中动态程序切片计算的改进方法和措施","authors":"Ross Gore, P. Reynolds","doi":"10.1109/WSC.2010.5679114","DOIUrl":null,"url":null,"abstract":"Stochastic simulations frequently exhibit behaviors that are difficult to recreate and analyze, owing largely to the stochastics themselves, and consequent program dependency chains that can defy human reasoning capabilities. We present a novel approach called Markov Chain Execution Traces (MCETs) for efficiently representing sampled stochastic simulation execution traces and ultimately driving semiautomated analysis methods that require accurate, efficiently generated candidate execution traces. The MCET approach is evaluated, using new and established measures, against both additional novel and existing approaches for computing dynamic program slices in stochastic simulations. MCET's superior performance is established. Finally, a description of how users can apply MCETs to their own stochastic simulations and a discussion of the new analyses MCETs can enable are presented.","PeriodicalId":272260,"journal":{"name":"Proceedings of the 2010 Winter Simulation Conference","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved methods and measures for computing dynamic program slices in stochastic simulations\",\"authors\":\"Ross Gore, P. Reynolds\",\"doi\":\"10.1109/WSC.2010.5679114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic simulations frequently exhibit behaviors that are difficult to recreate and analyze, owing largely to the stochastics themselves, and consequent program dependency chains that can defy human reasoning capabilities. We present a novel approach called Markov Chain Execution Traces (MCETs) for efficiently representing sampled stochastic simulation execution traces and ultimately driving semiautomated analysis methods that require accurate, efficiently generated candidate execution traces. The MCET approach is evaluated, using new and established measures, against both additional novel and existing approaches for computing dynamic program slices in stochastic simulations. MCET's superior performance is established. Finally, a description of how users can apply MCETs to their own stochastic simulations and a discussion of the new analyses MCETs can enable are presented.\",\"PeriodicalId\":272260,\"journal\":{\"name\":\"Proceedings of the 2010 Winter Simulation Conference\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2010 Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2010.5679114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2010 Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2010.5679114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机模拟经常表现出难以重建和分析的行为,这主要是由于随机本身,以及随之而来的程序依赖链,这些依赖链可能违背人类的推理能力。我们提出了一种称为马尔可夫链执行轨迹(MCETs)的新方法,用于有效地表示采样的随机模拟执行轨迹,并最终驱动需要准确,有效生成候选执行轨迹的半自动分析方法。使用新的和已建立的措施,对随机模拟中计算动态程序切片的其他新颖和现有方法进行了评估。确立了MCET的优越性能。最后,描述了用户如何将mcet应用于他们自己的随机模拟,并讨论了mcet可以实现的新分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved methods and measures for computing dynamic program slices in stochastic simulations
Stochastic simulations frequently exhibit behaviors that are difficult to recreate and analyze, owing largely to the stochastics themselves, and consequent program dependency chains that can defy human reasoning capabilities. We present a novel approach called Markov Chain Execution Traces (MCETs) for efficiently representing sampled stochastic simulation execution traces and ultimately driving semiautomated analysis methods that require accurate, efficiently generated candidate execution traces. The MCET approach is evaluated, using new and established measures, against both additional novel and existing approaches for computing dynamic program slices in stochastic simulations. MCET's superior performance is established. Finally, a description of how users can apply MCETs to their own stochastic simulations and a discussion of the new analyses MCETs can enable are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An exploration of the effects of maintenance manning on Combat Mission Readiness utilizing agent based modeling Project management simulation with PTB Project Team Builder Agent-based simulation tutorial - simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation Modeling and simulation method to find and eliminate bottlenecks in production logistics systems Machine control level simulation of an AS/RS in the automotive industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1