超5G网络AI/ML模型的自适应再训练:一种预测方法

Venkateswarlu Gudepu, Venkatarami Reddy Chintapalli, P. Castoldi, L. Valcarenghi, T. B. Reddy, K. Kondepu
{"title":"超5G网络AI/ML模型的自适应再训练:一种预测方法","authors":"Venkateswarlu Gudepu, Venkatarami Reddy Chintapalli, P. Castoldi, L. Valcarenghi, T. B. Reddy, K. Kondepu","doi":"10.1109/NetSoft57336.2023.10175451","DOIUrl":null,"url":null,"abstract":"Beyond fifth-generation (B5G) networks (namely 6G) aim to support high data rates, low-latency applications, and massive machine communications. Integrating Artificial Intelligence (AI) and Machine Learning (ML) models are essential for addressing the network’s increasing complexity and dynamic nature. However, dynamic service demands of B5G cause the AI/ML models performance degradation, resulting in violations of Service Level Agreements (SLA), over-or under-provisioning of resources, etc. To address the performance degradation of the AI/ML models, retraining is essential. Existing threshold and periodic retraining approaches have potential disadvantages such as SLA violations and inefficient resource utilization for setting a threshold parameter in a dynamic environment. This paper presents a novel algorithm that predicts when to retrain AI/ML models using an unsupervised classifier. The proposed predictive approach is evaluated for a Quality of Service (QoS) prediction use case on the Open RAN Software Community (OSC) platform and compared to the threshold approach. The results show that the proposed predictive approach outperforms the threshold approach.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Retraining of AI/ML Model for Beyond 5G Networks: A Predictive Approach\",\"authors\":\"Venkateswarlu Gudepu, Venkatarami Reddy Chintapalli, P. Castoldi, L. Valcarenghi, T. B. Reddy, K. Kondepu\",\"doi\":\"10.1109/NetSoft57336.2023.10175451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beyond fifth-generation (B5G) networks (namely 6G) aim to support high data rates, low-latency applications, and massive machine communications. Integrating Artificial Intelligence (AI) and Machine Learning (ML) models are essential for addressing the network’s increasing complexity and dynamic nature. However, dynamic service demands of B5G cause the AI/ML models performance degradation, resulting in violations of Service Level Agreements (SLA), over-or under-provisioning of resources, etc. To address the performance degradation of the AI/ML models, retraining is essential. Existing threshold and periodic retraining approaches have potential disadvantages such as SLA violations and inefficient resource utilization for setting a threshold parameter in a dynamic environment. This paper presents a novel algorithm that predicts when to retrain AI/ML models using an unsupervised classifier. The proposed predictive approach is evaluated for a Quality of Service (QoS) prediction use case on the Open RAN Software Community (OSC) platform and compared to the threshold approach. The results show that the proposed predictive approach outperforms the threshold approach.\",\"PeriodicalId\":223208,\"journal\":{\"name\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft57336.2023.10175451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

超过第五代(B5G)网络(即6G)旨在支持高数据速率,低延迟应用程序和大规模机器通信。集成人工智能(AI)和机器学习(ML)模型对于解决网络日益增加的复杂性和动态性至关重要。然而,B5G的动态业务需求会导致AI/ML模型性能下降,从而导致违反服务水平协议(SLA)、资源供应过剩或不足等问题。为了解决AI/ML模型的性能下降问题,再训练是必不可少的。现有的阈值和定期再训练方法存在潜在的缺点,例如违反SLA以及在动态环境中设置阈值参数时资源利用率低下。本文提出了一种使用无监督分类器预测何时重新训练AI/ML模型的新算法。在开放RAN软件社区(OSC)平台上对所提出的预测方法进行了服务质量(QoS)预测用例的评估,并与阈值方法进行了比较。结果表明,所提出的预测方法优于阈值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Retraining of AI/ML Model for Beyond 5G Networks: A Predictive Approach
Beyond fifth-generation (B5G) networks (namely 6G) aim to support high data rates, low-latency applications, and massive machine communications. Integrating Artificial Intelligence (AI) and Machine Learning (ML) models are essential for addressing the network’s increasing complexity and dynamic nature. However, dynamic service demands of B5G cause the AI/ML models performance degradation, resulting in violations of Service Level Agreements (SLA), over-or under-provisioning of resources, etc. To address the performance degradation of the AI/ML models, retraining is essential. Existing threshold and periodic retraining approaches have potential disadvantages such as SLA violations and inefficient resource utilization for setting a threshold parameter in a dynamic environment. This paper presents a novel algorithm that predicts when to retrain AI/ML models using an unsupervised classifier. The proposed predictive approach is evaluated for a Quality of Service (QoS) prediction use case on the Open RAN Software Community (OSC) platform and compared to the threshold approach. The results show that the proposed predictive approach outperforms the threshold approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Network Management in Multi-Domain 6G Networks based on Graph Neural Networks Showcasing In-Switch Machine Learning Inference Latency-Aware Kubernetes Scheduling for Microservices Orchestration at the Edge DRL-based Service Migration for MEC Cloud-Native 5G and beyond Networks Hierarchical Control Plane Framework for Multi-Domain TSN Orchestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1